共查询到20条相似文献,搜索用时 0 毫秒
1.
Liang Gong Qiangling Duan Jialong Liu Mi Li Ping Li Kaiqiang Jin Jinhua Sun 《International Journal of Hydrogen Energy》2018,43(52):23558-23567
This paper investigates the effects of hydrogen additions on spontaneous ignition of high-pressure hydrogen released into hydrogen-air mixture. Hydrogen and air are premixed with different volume concentrations (0%, 5%, 10%, 15% and 20% H2) in the tube before high-pressure hydrogen is suddenly released. Pressure transducers are employed to detect the shock waves, estimate the mean shock wave speed and record the shock wave overpressure. Light sensors are used to determine the occurrence of high-pressure hydrogen spontaneous ignition in the tube. A high-speed camera is used to capture the flame propagation behavior outside the tube. It is found that only 5% hydrogen addition could decrease the minimum storage pressure required for spontaneous ignition from 4.37 MPa to 2.78 MPa significantly. When 10% or 15% hydrogen is added to the air, the minimum storage pressure decreases to 2.81 MPa and 1.85 MPa, respectively. When hydrogen addition increases to 20%, the spontaneous ignition even takes place at burst pressure as low as 1.79 MPa inside the straight tube. 相似文献
2.
Hiroshi Terashima Mitsuo Koshi Chika Miwada Toshio Mogi Ritsu Dobashi 《International Journal of Hydrogen Energy》2014
A two-dimensional (2-D) simulation of spontaneous ignition of high-pressure hydrogen in a length of duct is conducted to explore ignition mechanisms. The present study adopts a 2-D rectangular duct and focuses on effects of the initial diaphragm shape on spontaneous ignition. The Navier–Stokes equations with a detailed chemical kinetics mechanism are solved in a manner of direct numerical simulation. The detailed mechanisms of spontaneous ignitions are discussed for each initial diaphragm shape. For a straight diaphragm, ignition only occurs near the wall owing to the adiabatic wall condition, while three ignition events are identified for a greatly deformed diaphragm: ignition due to reflection of leading shock wave at the wall, hydrogen penetration into shock-heated air near the wall, and deep penetration of hydrogen into shock-heated air behind the leading shock wave. 相似文献
3.
Numerical simulations have been carried out for spontaneous ignition in the sudden release of pressurized hydrogen into air. A mixture-averaged multi-component approach was used for accurate calculation of molecular transport. Spontaneous ignition and combustion chemistry were accounted for using a 21-step kinetic scheme. To reduce false numerical diffusion, extremely fine meshes were used along with the arbitrary Lagrangian–Eulerian (ALE) method in which convective terms are solved separately from the other terms. 相似文献
4.
The issue of spontaneous ignition of highly pressurized hydrogen release is of important safety concern, e.g. in the assessment of risk and design of safety measures. This paper reports on recent numerical investigation of this phenomenon through releases via a length of tube. This mimics a potential accidental scenario involving release through instrument line. The implicit large eddy simulation (ILES) approach was used with the 5th-order weighted essentially non-oscillatory (WENO) scheme. A mixture-averaged multi-component approach was used for accurate calculation of molecular transport. The thin flame was resolved with fine grid resolution and the autoignition and combustion chemistry were accounted for using a 21-step kinetic scheme.The numerical study revealed that the finite rupture process of the initial pressure boundary plays an important role in the spontaneous ignition. The rupture process induces significant turbulent mixing at the contact region via shock reflections and interactions. The predicted leading shock velocity inside the tube increases during the early stages of the release and then stabilizes at a nearly constant value which is higher than that predicted by one-dimensional analysis. The air behind the leading shock is shock-heated and mixes with the released hydrogen in the contact region. Ignition is firstly initiated inside the tube and then a partially premixed flame is developed. Significant amount of shock-heated air and well developed partially premixed flames are two major factors providing potential energy to overcome the strong under-expansion and flow divergence following spouting from the tube.Parametric studies were also conducted to investigate the effect of rupture time, release pressure, tube length and diameter on the likelihood of spontaneous ignition. It was found that a slower rupture time and a lower release pressure will lead to increases in ignition delay time and hence reduces the likelihood of spontaneous ignition. If the tube length is smaller than a certain value, even though ignition could take place inside the tube, the flame is unlikely to be sufficiently strong to overcome under-expansion and flow divergence after spouting from the tube and hence is likely to be quenched. 相似文献
5.
Spontaneous ignition of a pressurized hydrogen release has important implications in the risk assessment of hydrogen installations and design of safety measures. In real accident scenarios, an obstacle may be present close to the release point. Relatively little is known about the effect of such an obstacle on the salient features of highly under-expanded hydrogen jets and its spontaneous ignition.In the present study, the effect of a thin flat obstacle on the spontaneous ignition of a direct pressurized hydrogen release is investigated using a 5th-order WENO scheme and detailed chemistry. The numerical study has revealed that, for the conditions studied, the presence of the obstacle plays an important role in quenching the flame following spontaneous ignition for the release conditions considered. 相似文献
6.
J.D. Blouch 《Combustion and Flame》2003,132(3):512-522
Experiments were conducted to determine the effects of turbulence on the temperature of a heated air jet required to ignite a counterflowing cold hydrogen/nitrogen jet. In contrast to pseudo-turbulent flows, where turbulence was generated by only a perforated plate on the fuel side, resulting in little effect on ignition in a hydrogen system, fully turbulent flows with perforated plates on both sides of the flow were found to produce noticeable effects. The difference was attributed to the fact that in fully turbulent flows, a significantly larger range of turbulent eddies extend to smaller scales than in pseudo-turbulent flows. At atmospheric pressure, the lowest turbulence intensity studied had ignition temperatures notably lower than laminar ones, while further increases in turbulence intensity resulted in rising ignition temperatures. As a result, optimal conditions for nonpremixed hydrogen ignition exist in weakly turbulent flows where the ignition temperature is lower than can be obtained in other laminar or turbulent flows at the same pressure. Similar trends were seen for all fuel concentrations and at all pressures in the second ignition limit (below 3-4 atm). At higher pressures, turbulent flows caused the ignition temperatures to continue to follow the second limit resulting in ignition temperatures higher than the laminar values. The extension of the second limit ends at the highest pressures (7 to 8 atm) where evidence of third limit behavior appears. Three mechanisms were noted to explain the experimental results. First, turbulent eddies similar in size to the ignition kernel can promote discrete mixing of otherwise isolated pockets of gas. Second, this mixing can promote HO2 chain branching pathways, which can account for the enhanced ignition noted in the second limit where reaction is governed by crossover temperature chemistry. Third, turbulence limits the excursion times available for reaction, inordinately affecting the slower HO2 reactions. This is responsible for the increasing ignition temperature with turbulence intensity and pressure. 相似文献
7.
This paper describes a large eddy simulation model of hydrogen spontaneous ignition in a T-shaped channel filled with air following an inertial flat burst disk rupture. This is the first time when 3D simulations of the phenomenon are performed and reproduced experimental results by Golub et al. (2010). The eddy dissipation concept with a full hydrogen oxidation in air scheme is applied as a sub-grid scale combustion model to enable use of a comparatively coarse grid to undertake 3D simulations. The renormalization group theory is used for sub-grid scale turbulence modelling. Simulation results are compared against test data on hydrogen release into a T-shaped channel at pressure 1.2–2.9 MPa and helped to explain experimental observations. Transitional phenomena of hydrogen ignition and self-extinction at the lower pressure limit are simulated for a range of storage pressure. It is shown that there is no ignition at storage pressure of 1.35 MPa. Sudden release at pressure 1.65 MPa and 2.43 MPa has a localised spot ignition of a hydrogen-air mixture that quickly self-extinguishes. There is an ignition and development of combustion in a flammable mixture cocoon outside the T-shaped channel only at the highest simulated pressure of 2.9 MPa. Both simulated phenomena, i.e. the initiation of chemical reactions followed by the extinction, and the progressive development of combustion in the T-shape channel and outside, have provided an insight into interpretation of the experimental data. The model can be used as a tool for hydrogen safety engineering in particular for development of innovative pressure relief devices with controlled ignition. 相似文献
8.
K. Yamashita T. Saburi Y. Wada M. Asahara T. Mogi A.K. Hayashi 《International Journal of Hydrogen Energy》2017,42(11):7755-7760
A high-pressure hydrogen jet released into the air has the possibility of igniting in a tube without any ignition source. The mechanism of this phenomenon, called spontaneous ignition, is considered to be that hydrogen diffuses into the hot air caused by the shock wave from diaphragm rupture and the hydrogen-oxidizer mixed region is formed enough to start chemical reaction. Recently, flow visualization studies on the spontaneous ignition process have been conducted to understand its detailed mechanism, but such ignition has not yet been well clarified. In this study, the spontaneous ignition phenomenon was observed in a rectangular tube. The results confirm the presence of a flame at the wall of the tube when the shock wave pressure reaches 1.2–1.5 MPa in more than 9 MPa burst pressure and that ignition occurs near the wall, followed by multiple ignitions as the shock wave propagates, with the ignitions eventually combining to form a flame. 相似文献
9.
Recent experimental observations have shown that pressurized hydrogen may be spontaneously ignited in downstream tubes of sufficient length when it is released into the air due to the rapid failure of a pressure boundary. The mixing between hydrogen and shocked air within the downstream tubes is speculated to be a key process for the occurrence of spontaneous ignition of hydrogen. A direct numerical simulation has been conducted to analyze the processes of mixing and of spontaneous ignition of hydrogen within a tube after the rupture of a disk at a bursting pressure of 86.1 atm. A realistic assumption of the geometry of the pressure boundary at the moment of its failure is used for the initial condition of the numerical simulation to properly account for its effect on the mixing process. The present simulation results show that the mixing of shocked air and expanding hydrogen is enhanced by the transient multi-dimensional shock initiated by the failure of a rupture disk and by the following interactions during the flow development through the tube, thus causing spontaneous ignition of hydrogen within the tube. 相似文献
10.
《International Journal of Hydrogen Energy》2014,39(35):20554-20559
Self-ignition behaviour of highly transient jets from hydrogen high pressure tanks were investigated up to 26 MPa. The jet development and related ignition/combustion phenomena were characterized by high speed video techniques and time resolved spectroscopy. Video cross correlation method BOS, brightness subtraction and 1-dimensional image contraction were used for data evaluation. Results gained provided information on ignition region, flame head jet velocity, flame contours, pressure wave propagation, reacting species and temperatures. On burst of the rupture disc, the combustion of the jet starts close to the nozzle at the boundary layer to the surrounding air. Combustion velocity decelerated in correlation to an approximated drag force of constant value which was obtained by analysing the head velocity. The burning at the outer jet layer develops to an explosion converting to a nearly spherical volume at the jet head; the movement of the centroid is nearly unchanged and follows the jet front in parallel. The progress of the nearly spherical explosion could be evaluated by assuming an averaged flame ball radius. An apparent flame velocity could be derived to be about 20 m/s. It seems to increase slightly on the pressure in the tank or the related initial jet momentum. Self-initiation is nearly always achieved especially induced the interaction of shock waves and their reflections from the orifice. The combustion process is composed of shell combustion of the jet cone at the bases with a superimposed explosion of the decelerating jet head volume. 相似文献
11.
Hydrogen is expected to serve as a clean energy carrier. However, since there are serious ignition hazards associated with its use, it is necessary to collect data on safety in a range of possible accident scenarios so as to assess hazards and develop mitigation measures. When high-pressure hydrogen is suddenly released into the air, a shock wave is produced, which compresses the air and mixes it with hydrogen at the contact surface. This leads to an increase in the temperature of the hydrogen–air mixture, thereby increasing the possibility of ignition. We investigated the phenomena of ignition and flame propagation during the release of high-pressure hydrogen. When a hydrogen jet flame is produced by self-ignition, the flame is held at the pipe outlet and a hydrogen jet flame is produced. From the experiment using the measurement pipe, the presence of a flame in the pipe is confirmed; further, when the burst pressure increased, the flame may be detected at a position near the diaphragm. At the pipe outlet, the flame is not lifted and self-ignition is initiated at the outer edge of the jet. 相似文献
12.
Eisuke Yamada Naoki KitabayashiA. Koichi Hayashi Nobuyuki Tsuboi 《International Journal of Hydrogen Energy》2011,36(3):2560-2566
High-pressure hydrogen leak is one of the top safety issues presently. This study elucidates numerically the physics and mechanism of high-pressure hydrogen jet ignition when the hydrogen suddenly spouts into the air through a tube. The direct numerical simulation based on the compressible fluid dynamics was carried out. When high-pressure hydrogen is passing through the tube filled by atmospheric air, a strong shock wave is formed and heats up hydrogen behind the shock wave by compression effect. The leading shock wave is expanded widely after the tube exit, auto-ignitions of hydrogen occur. When the tube becomes longer, the tendency of auto-ignition is increased. Other type of auto-ignitions is also predicted. An explosion is also occurred in the tube under a certain condition. Vortices are generated behind the shock wave in a long tube. There is a possibility of an auto-ignition induced by vortices. 相似文献
13.
In order to simulate an accidental hydrogen release from the high pressure pipe system of a hydrogen facility a systematic study on the nature of transient hydrogen jets into air and their combustion behavior was performed at the KIT hydrogen test site HYKA. Horizontal unsteady hydrogen jets from a reservoir of 0.37 dm3 with initial pressures of up to 200 bar have been investigated. The hydrogen jets released via round nozzles 3, 4, and 10 mm were ignited with different ignition times and positions. The experiments provide new experimental data on pressure loads and heat releases resulting from the deflagration of hydrogen–air clouds formed by unsteady turbulent hydrogen jets released into a free environment. It is shown that the maximum pressure loads occur for ignition in a narrow position and time window. The possible hazard potential arising from an ignited free transient hydrogen jet is described. 相似文献
14.
The study of compressed hydrogen releases from high-pressure storage systems has practical application for hydrogen and fuel cell technologies. Such releases may occur either due to accidental damage to a storage tank, connecting piping, or due to failure of a pressure release device (PRD). Understanding hydrogen behavior during and after the unintended release from a high-pressure storage device is important for development of appropriate hydrogen safety codes and standards and for the evaluation of risk mitigation requirements and technologies. In this paper, the natural and forced mixing and dispersion of hydrogen released from a high-pressure tank into a partially enclosed compartment is investigated using analytical models. Simple models are developed to estimate the volumetric flow rate through a choked nozzle of a high-pressure tank. The hydrogen released in the compartment is vented through buoyancy induced flow or through forced ventilation. The model is useful in understanding the important physical processes involved during the release and dispersion of hydrogen from a high-pressure tank into a compartment with vents at multiple levels. Parametric studies are presented to identify the relative importance of various parameters such as diameter of the release port and air changes per hour (ACH) characteristic of the enclosure. Compartment overpressure as a function of the size of the release port is predicted. Conditions that can lead to major damage of the compartment due to overpressure are identified. Results of the analytical model indicate that the fastest way to reduce flammable levels of hydrogen concentration in a compartment is by blowing through the vents. Model predictions for forced ventilation are presented which show that it is feasible to effectively and rapidly reduce the flammable concentration of hydrogen in the compartment following the release of hydrogen from a high-pressure tank. 相似文献
15.
Spark-less jet ignition pre-chambers are enablers of high efficiencies and load control by quantity of fuel injected when coupled with direct injection of main chamber fuel, thus permitting always lean burn bulk stratified combustion. Towards the end of the compression stroke, a small quantity of hydrogen is injected within the pre-chamber, where it mixes with the air entering from the main chamber. Combustion of the air and fuel mixture then starts within the pre-chamber because of the high temperature of the hot glow plug, and then jets of partially combusted hot gases enter the main chamber igniting there in the bulk, over multiple ignition points, lean stratified mixtures of air and fuel. The paper describes the operation of the spark-less jet ignition pre-chamber coupling CFD and CAE engine simulations to allow component selection and engine performance evaluation. 相似文献
16.
Over the last century, there have been reports of high pressure hydrogen leaks igniting for no apparent reason, and several ignition mechanisms have been proposed. Although many leaks have ignited, there are also reported leaks where no ignition has occurred. Investigations of ignitions where no apparent ignition source was present have often been superficial, with a mechanism postulated which, whilst appearing to satisfy the conditions prevailing at the time of the release, simply does not stand up to rigorous scientific analysis. Some of these proposed mechanisms have been simulated in a laboratory under superficially identical conditions and appear to be rigorous and scientific, but the simulated conditions often do not have the same large release rates or quantities, mainly because of physical constraints of a laboratory. Also, some of the release scenarios carried out or simulated in laboratories are totally divorced from the realistic situation of most actual leaks. Clearly there are gaps in the knowledge of the exact ignition mechanism for releases of hydrogen, particularly at the high pressures likely to be involved in future storage and use. Mechanisms which have been proposed in the past are the reverse Joule–Thomson effect, electrostatic charge generation, diffusion ignition, sudden adiabatic compression, and hot surface ignition. Of these, some have been characterised by means of computer simulation rather than by actual experiment, and hence are not validated. Consequently there are discrepancies between the theories, releases known to have ignited, and releases which are known to have not ignited. From this, postulated ignition mechanisms which are worthy of further study have been identified, and the gaps in information have been highlighted. As a result, the direction for future research into the potential for ignition of hydrogen escapes has been identified. 相似文献
17.
An experimental investigation is conducted into the nature of catalytic ignition of leaked hydrogen gas within an enclosure, and the nature of hydrogen dispersion under varied venting conditions. Using a 1/16th linear scale two-car garage as a model, and a platinum foil as a catalytic surface, it is found that for all conditions tested, catalytic ignition is observed after the leaked hydrogen comes in contact with the catalytic surface, which is initially at or near room temperature. After ignition, these surface reactions lead to steady-state surface temperatures in the range of 600–800 K, dependent on inlet conditions in terms of mixture composition and flow rate. In addition, varying the venting opportunities from the garage walls suggests that not only total area, but also the number and position of vents may impact the nature of hydrogen accumulation within an enclosed structure. 相似文献
18.
A buoyant round vertical hydrogen jet is investigated using Large Eddy Simulations at low Mach number (M = 0.3). The influence of the transient concentration fields on the extent of the gas envelope with concentrations within the flammability limits is analyzed and their structure are characterized. The transient flammable region has a complex structure that extends up to 30% beyond the time-averaged flammable volume, with high concentration pockets that persist sufficiently long for potential ignition. Safety envelopes devised on the basis of simplified time-averaged simulations would need to include a correction factor that accounts for transient incursions of high flammability concentrations. 相似文献
19.
Sergey D. Zambalov Igor A. Yakovlev Vladimir A. Skripnyak 《International Journal of Hydrogen Energy》2017,42(27):17251-17259
In this paper the combustion and ignition process in the hydrogen-fueled peripheral-ported rotary engine with single and dual laser ignition systems was studied numerically. The computational method was established for the process simulation including interaction between turbulence and chemical reactions. The detailed chemical kinetic model of hydrogen combustion was used. It was shown that the ignition and combustion process in the H2-fueled rotary engine is highly transient with specific distortion and stretching of the combustion front in the combustion chamber due to complex motion of the rotor relative to the engine housing. The single and dual laser ignition systems were simulated to compare the ignition efficiency and the rate of hydrogen burning out. The evaluation of pressure in the combustion chamber was performed and compared with the experimental data obtained for the rotary engine fueled by natural gas. It was shown that the H2-fueled rotary engine with the dual laser ignition system has potential application in alternative automotive industry due to high efficiency and near-zero carbon-based emission. 相似文献
20.
Recent papers 1, 2, 3, 4 and 5 have proposed two different systems to more efficiently and more rapidly burn the fuel in highly boosted, high compression ratio, directly injected internal combustion engines permitting multi-mode combustion operation. In a first system, a second direct injector is coupled with the standard Diesel direct injector and glow plug. The second direct injector introduces the most of the fuel while the Diesel direct injector only introduces a minimum amount of fuel to control the start of the combustion about top dead centre. The fuel injected before the Diesel ignition injection burns premixed, the fuel injected after the Diesel ignition injection burns diffusion. This design permits combustion premixed gasoline-like if all the fuel is injected before the Diesel ignition injection, diffusion Diesel-like if all the fuel is injected after the Diesel ignition injection (as done in the Westport High Pressure Direct Injection concept [12]), and mixed gasoline/Diesel like injecting the fuel before and after the Diesel ignition injection. The premixed gasoline-like mode is actually a homogeneous charge compression ignition (HCCI)-like mode, where an amount of fuel smaller than the threshold value producing top dead centre auto ignition is then ignited at top dead centre by the Diesel ignition injection in a more robust, stable and repeatable operation unaffected by small changes in properties and composition of the fuel and air mixture. In an alternative design, the glow plug is replaced by a jet ignition devices feed preferably with H2. In this case, a spark ignition ignites the stoichiometric H2-air mixture within the jet ignition pre-chamber. The jets of hot reacting H2-air combusting gases then ignite the main chamber premixed mixture in the gasoline-like operation or create suitable conditions for the fuel subsequently injected to burn diffusion in the Diesel-like operation or perform both duties in the mixed gasoline/Diesel-like operation. A single main chamber direct injector is generally needed (for example with H2, CH4 or C3H8 fuels). With NH3, a second main chamber direct injector with H2 is also used to limit the volume of the jet ignition pre-chamber. In this short communications, the results of detailed chemistry simulations with the SRM (Stochastic Reactor Model) suite, a sophisticated engineering tool combining conventional 1D or 3D fluid dynamics approaches are presented to further support these two engine concepts working with fuels H2, CH4, C3H8, NH3, I-C8H18 and N-C7H16 and adopting two different mechanisms for chemical kinetics. Within the limits of the present simulations (a very accurate chemical kinetic for combustion of I-C8H18 and N-C7H16 but a much less accurate chemical kinetic for the other fuels and especially for NH3, unavailability of variable composition and variable properties multiple injections), the Diesel injection ignition and the hydrogen jet ignition are proved to permit combustion modes leading to indicated thermal efficiencies up to 10% better than the latest Diesels at high loads within the same peak pressure and peak temperature constraints. 相似文献