首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of ordering on susceptibility to hydrogen embrittlement of a Ni-base superalloy (alloy C-276) has been investigated by means of tensile tests in air and with hydrogen-charging in 1N-H2SO4 solution. The annealed specimen has exhibited intergranular fracture by hydrogen-charging, resulting in a marked reduction in tensile elongation and ultimate tensile strength. The mode of fracture was changed by aging at 773 K, and the transgranular fracture has been found to be dominant in the aged specimens. The susceptibility to hydrogen embrittlement, as identified by the test method used in this study, seems to be reduced by short-term aging, though it turns out to be increased again by further aging. The fractured boundaries have been characterized using electron channeling pattern (ECP) analysis of adjacent grains. It is found that the misorientation of grain boundaries plays an important role in fracture, and ∑3 boundaries, twin boundaries in a face-centered cubic (fcc) lattice, are most likely to fracture in the aged specimens. Transmission electron microscopy (TEM) observation has shown that a short-range ordering reaction from a disordered fcc lattice into an ordered Ni2(Cr, Mo) (Pt2Mo type) super-lattice takes place by aging, and hence, superdislocation triplets with APB (antiphase boundary) become predominant when deformed. It is also seen that in the aged specimens, deformation twinning is another mode of deformation, and this leads to the transgranular fracture at twin boundaries by hydrogen-charging. These results suggest that a change in the mode of deformation after aging plays a major role in fracture due to hydrogen embrittlement as a consequence of the heterogeneous interaction between slip dislocations and twin boundaries.  相似文献   

2.
The aqueous environment-assisted cracking (EAC) behavior of two peak-aged beta-titanium alloys was characterized with a fracture mechanics method. Beta-21S is susceptible to EAC under rising load in neutral 3.5 pct NaCl at 25 °C and −600 mVSCE, as indicated by a reduced threshold for subcritical crack growth (K TH ), an average crack growth rate of up to 10 μms, and intergranular fracture compared to microvoid rupture in air. In contrast, the initiation fracture toughness (K ICi ) of Ti-15-3 in moist air is lower than that of Beta-21S at similar high σYS (1300 MPa) but is not degraded by chloride, and cracking is by transgranular microvoid formation. The intergranular EAC susceptibility of Beta-21S correlates with both α-colonies precipitated at β grain boundaries and intense slip localization; however, the causal factor is not defined. Data suggest that both features, and EAC, are promoted by prolonged solution treatment at high temperature. In a hydrogen environment embrittlement (HEE) scenario, crack-tip H could be transported by planar slip bands to strongly binding trap sites and stress/strain concentrations at α colony or β grain boundaries. The EAC in Beta-21S is eliminated by cathodic polarization (to −1000 mVSCE), as well as by static loading for times that otherwise produce rising-load EAC. These beneficial effects could relate to reduced H production at the occluded crack tip during cathodic polarization and to increased crack-tip passive film stability or reduced dislocation transport during deformation at slow crack-tip strain rates. High-strength β-titanium alloys are resistant, but not intrinsically immune to chloride EAC, with processing condition possibly governing fracture. Formerly Graduate Research Associate, University of Virginia Formerly Graduate Research Associate, University of Virginia  相似文献   

3.
The influence of Mn content on the ductile-brittle transition in 16 to 36 wt pct Mn steels was investigated and interpreted in light of the evolving microstructure. It was found that when hcp ε martensite is present in the as-quenched condition or forms during deformation, it lowers the toughness. In 25Mn steel, the stress concentrations at e plate intersections result in the formation of planar void sheets along the {111}γ planes. The deformation-induced α’ martensite in 16 to 20 pct Mn alloys enhances the toughness, but leads to a ductile-to-brittle transition at low temperatures that is due to the intrusion of an intergranular fracture mode. Binary alloys with greater than 31 pct Mn also fracture in an intergranular mode at 77 K although the impact energy remains quite high. Auger spectroscopy of the fracture surfaces shows no evidence of significant impurity segregation, which suggests the importance of slip heterogeneity in controlling intergranular fracture in these alloys.  相似文献   

4.
The effects of microstructure and strength on the fracture toughness of ultra high strength aluminum alloys have been investigated. For this study three ultra high purity compositions were chosen and fabricated into 1.60 mm (0.063 inches) sheet in a T6 temper providing a range of yield strengths from 496 MPa (72 ksi) to 614 MPa (89 ksi). These alloys differ only in the volume fraction of the fine matrix strengthening precipitates (G. P. ordered + η′ ). Fracture toughness data were generated using Kahn-type tear tests, as well asR-curve andJ c analyses performed on data from 102 mm wide center cracked tension panel tests. Consistent with previous studies, it has been demonstrated that the toughness decreases as the yield strength is increased by increasing the solute content. Concomitant with this decrease in toughness, a transition in fracture mode was observed from predominantly transgranular dimpled rupture to predominantly intergranular dimpled rupture. Both quantitative fractography and X-ray microanalysis clearly demonstrate that fracture initiation for the two fracture modes occurred by void formation at the Cr-dispersoids (E-phase). In the case of intergranular fracture, void coalescence was facilitated by the grain boundary η precipitates. The difference in fracture toughness behavior of these alloys has been shown to be dependent on the coarseness of matrix slip and the strength differential between the matrix and precipitate free zone (σM-σPFZ). A new fracture mechanism has been proposed to explain the development of the large amounts of intergranular fracture observed in the low toughness alloys. Formerly a Research Assistant at Carnegie-Mellon University  相似文献   

5.
The fatigue and fracture mechanisms in Ti-48Al-xMn (x = 1.4 to 2.0 at. pct) gamma-based titanium aluminide alloys are elucidated. Unlike most gamma alloys, which fail predominantly by transgranular fracture at room temperature, fracture in ternary Ti-48Al-xMn alloys is shown to occur mainly by intergranular failure. The incidence of intergranular failure increased with increasing annealing duration and temperature. Intergranular fracture is shown to occur as a result of the segregation of Mn to equiaxed and interlamellar boundaries. Annealing either above or below the eutectoid temperature results in the precipitation of α2 particles. The reduction in the strength and toughness of ternary Mn-containing alloys is attributed to the combined effects of segregation and α2 precipitation. A micromechanics framework is presented for the assessment of twin toughening mechanisms under monotonie and cyclic loading. Formerly Staff Scientist with General Electric Research and Development, Schenectady, NY 12301 Formerly Undergraduate Student, Department of Materials Science and Engineering, The Ohio State University  相似文献   

6.
Aging of highly β-stabilized titanium alloys commonly leads to the formation of precipitate-free zones being susceptible to fatigue crack initiation. Duplex aging improves the fatigue properties of metastable β titanium alloys by enhancing a homogeneous α phase formation. In this study a duplex-aging cycle was designed for Ti 38-644 (β-C). Depending on the prior processing history heat treatment parameters were adapted on the basis of microstructure studies, hardness measurements and comparative tensile tests. The fatigue limit and fatigue crack growth threshold were determined for duplex-aged β-C. The results indicate that duplex aging promotes a homogeneously precipitated α phase providing excellent values of the fatigue limit. Surface-related fatigue crack initiation was observed. Comparing the fracture surfaces of direct- and duplex-aged β-C a transition of the tensile fracture mode from intergranular to predominantly transgranular was observed accompanied by a gain in ductility at comparable yield strengths. This was assumed to be the reason for the slightly improved fatigue crack growth behavior of duplex-aged as compared to direct-aged β-C. Along the entire heat treatment cycle the microstructure response was evaluated with regard to the particular effects on the fatigue properties. The results indicate clearly that key to success is a completely recrystallized β microstructure and the reasonably controlled aging response.  相似文献   

7.
Near threshold fatigue crack growth behavior of a high strength steel under different tempered conditions was investigated. The important aspect of the study is to compare the crack growth behavior in terms of the closure-free component of the threshold stress intensity range, ΔK th,eff While a systematic variation in the absolute threshold stress intensity range with yield strength was observed, the trend in the intrinsic ΔK th or ΔK th,eff exhibited a contrasting behavior. This has been explained as due to the difference in fracture modes during near threshold crack growth at different temper levels. It is shown that in a high strength and high strain hardening microstructure, yielding along crystallographic slip planes is difficult and hence it exhibited a flat transgranular fracture. In a steel with low strain hardening characteristics and relatively low strength, a tendency to crystallographic planar slip is observed consequently resulting in high ΔK th. Occurrence of a predominantly intergranular fracture is shown to reduce intrinsic ΔK th drastically and increase crack growth rates. Also shown is that crack closure can occur in high strength steels under certain fracture morphologies. A ‘transgranular planar slip’ during the inception of a ‘microstructure sensitive’ crack growth is essential to promote intergranular and faceted fracture. The occurrence of a maximum in the fraction of intergranular fracture during threshold crack growth corresponds to the ΔK value at which the cyclic plastic zone size becomes equal to the prior austenitic grain size.  相似文献   

8.
In the “as rolled” condition an Fe-6 Ni-5 Mn maraging type alloy was found to be brittle exhibiting intergranular fractures. The addition of 2.5 pct Mo and 5.0 pct Mo increased the impact toughness of the “as rolled” material and changed the mode of brittle fracture to transgranular cleavage. The addition of 9 pct Co embrittled the alloy. On aging Mo and Co raised the peak hardness of the base Fe-6 Ni-5 Mn alloy, however, aging led to rapid embrittlement. The base alloy and an alloy containing 2.5 pct Mo showed brittle intergranular fractures on aging. The addition of 5 pct Mo gave rise to brittle transgranular cleavage fractures on aging at 450°C, but at temperatures less than 450°C there was always up to 20 pct intergranular fracture present in brittle fractures. At temperatures greater than 475°C brittle intergranular failure occurred in the 5 pct Mo alloy due to a grain boundary film of M6C and Fe2Mo. This paper is based upon a thesis submitted by D. R. Squires in partial fulfilment for a higher degree of CNAA at Sheffield Polytechnic.  相似文献   

9.
Environmental hydrogen embrittlement of a Ti-6 Al-4 V alloy has been studied as a function of test displacement rate and of variations inα- β microstructure. Embrittlement in low pres sure (∼1 atm) gaseous hydrogen was inversely dependent on test displacement rate and strongly dependent on microstructure. At a given displacement rate, microstructures having a continuous α-phase matrix were less severely embrittled than those having a continuous β-phase matrix. Further, brittle fracture occurred in the former microstructures by transgranular cleavage and in the latter microstructures by intergranular separation. These observations are consistent with previous studies made on slow strain-rate embrittlement of hydrogen-charged titanium alloys and are explained in terms of relative hydrogen transport rates within the α-phase and β-phase titanium.  相似文献   

10.
The fatigue propagation rates and fatigue threshold ( ΔK th) values were studied (R = 0.1 and frequency = 20 Hz) on copper and 70-30 α-brass of two different grain sizes in laboratory air and dry argon. With decreasing grain size, the threshold increased in copper, while it decreased in α-brass. These results suggest that in copper, crack tip plasticity considerations were more important in determining the threshold values than crack closure effects. Dry argon increased ΔK th slightly in copper and more significantly in α-brass. A transition from completely transgranular to partially intergranular and back to completely transgranular cracking was observed with decreasing crack growth rates in both materials and environments. The growth rates for which intergranular cracking was obtained were found to be consistent with a hydrogen embrittlement mechanism, associated with adsorption of water molecules and dislocation transport of hydrogen.  相似文献   

11.
The role of microstructure in hydrogen-assisted fracture of 7075 aluminum   总被引:3,自引:0,他引:3  
Underaged, peak strength (T6), and overaged (T73) microstructures were studied in 7075 plate material. Hydrogen charged and uncharged tensile specimens of longitudinal orientation were tested between −196°C and room temperature. The results confirm a hydrogen embrittlement effect, manifested mainly in the temperature dependence of the reduction of area loss; a classical behavior of hydrogen embrittlement. The maximum embrittlement shifted to lower temperatures with further aging. The effect of hydrogen was largest for the underaged condition and smallest for the overaged, thus following the pattern found for the sensitivity to stress-corrosion cracking in high strength aluminum alloys. The fracture path was predominantly transgranular, with minor amounts of intergranular fracture. J. ALBRECHT, formerly with the Department of Metallurgy and Materials Science, Carnegie-Mellon University  相似文献   

12.
The beneficial effect of aging on the intergranular embrittlement of the shape memory Cu-AI-Ni β phase alloys is described. The fracture progressively changes from completely intergranular to transgranular when quenched samples are aged. The change in fracture behavior appears to be associated with the precipitation of a ductile phase (a) in the grain boundary region. This hypothesis is supported by the results of electron microprobe analysis and Auger electron spectroscopy. Aging does not have any significant effect on the microhardness of samples. Some transmission electron microscopic observations of the changes occurring on aging are also presented. Formerly with The University of Connecticut, Storrs, CT 06268.  相似文献   

13.
Plastic deformation and fracture of binary TiAl-base alloys   总被引:4,自引:0,他引:4  
The mechanical behavior of binary TiAl alloys containing 46 to 60 at. pct Al has been studied in bulk materials preparedvia rapid solidification processing. Bending and tensile tests were carried out at room temperature as a function of Al concentration. A few alloys were also tested from liquid nitrogen temperature to ∼ 1000°C. Deformation substructures were studied by analytical transmission electron microscopy and fracture modes by scanning electron microscopy (SEM). It was found that both microstructure and composition strongly affect the mechanical behavior of TiAl-base alloys. A duplex structure, which contains both primary y grains and transformedγ/α 2 lamellar grains, is more deformable than a single-phase or a fully transformed structure. The highest plasticities are observed in duplex alloys containing 48–50 at. pct Al after heat treatment in the center of theγ + α phase field. The deformation of these duplex alloys is facilitated by 1/2[110] slip and {111} twinning, but very limited superdislocation slip occurs. The twin deformation is suggested to result from a lowered stacking fault energy due to oxygen depletion or an intrinsic change in chemical bonding. Other factors, such as grain size and grain boundary chemistry and structure, are important from a fracture point of view. The results on the deformation and fracture modes as a function of test temperature are also discussed.  相似文献   

14.
A relationship between fracture mode, grain boundary composition, and hydrogen pressure has been determined for nickel straining electrode samples tested at cathodic potentials. This relationship can be expressed asCs/* αCH2/− nwhereCs/* is the critical grain boundary sulfur concentration corresponding to 50 pct transgranular and 50 pct intergranular fracture andP H 2 is the hydrogen pressure. The value ofn was found to be between 0.34 and 0.9. This expression was derived by relatingCs/* to the hydrogen overpotential with the Nernst equation. At a cathodic test potential of −0.3 V (SCE),Cs/* was equal to 0.20 monolayers of sulfur and at higher cathodic potentials or higher hydrogen pressures,Cs/* decreased such that at −0.72 V (SCE)Cs/* was equal to 0.045 monolayers of sulfur. The inverse hydrogen pressure dependence observed with cathodic hydrogen is similar to that for the hydrogen permeation rate or a critical hydrogen concentration derived by Gerberichet al.6 for gaseous hydrogen. This similarity between gaseous and cathodic hydrogen suggests that grain boundary impurities contribute to the hydrogen embrittlement process without altering the embrittlement process although this result does not indicate whether decohesion or plasticity dependent processes are responsible for the combined sulfur-hydrogen effect on the intergranular fracture of nickel.  相似文献   

15.
Hydrogen embrittlement of AISI 304-type austenitic stainless steels has been studied with special emphasis on the effects of the nitrogen content of the steels. Hydrogen charging was found to degrade the mechanical properties of all the steels studied, as measured by a tensile test. The fracture surfaces of hydrogen charged specimens were brittle cleavage-like whereas the uncharged specimens showed ductile, dimpled fracture. In sensitized materials transgranular cleavage mode of fracture was replaced by an intergranular mode of fracture and the losses of mechanical properties were higher. Nitrogen alloying decreased the hydrogen-induced losses of mechanical properties by increasing the stability of austenite. In sensitized steels the stability of austenite and nitrogen content were found to have only a minor effect on hydrogen embrittlement, except when sensitization had causedα′-martensite transformation at the grain boundaries. Formerly with Helsinki University of Technology, Laboratory of Physical Metallurgy, SF-02150 Espoo 15, Finland.  相似文献   

16.
A previous study (Part I) showed that the solution-treated and aged (STA) (i.e., peak-aged) condition of Beta-C Ti, (σ 0.2 pct y = 1260 MPa) possesses an enhanced hydrogen (H) embrittlement susceptibility compared to the solution-treated (ST) condition, (σ 0.2 pct y = 865 MPa), as measured by reductions in the fracture initiation stress with predissolved H content and the introduction of an intergranular (IG) fracture mode. It was also shown that yield-strength elevation and the subsequent enhancement in the local hydrostatic stresses within the notch root are not the controlling factors in the H-assisted* IG fracture initiation of the STA condition. Previous work (Part I) implicates a microstructural feature or condition associated with the 500 °C aging treatment. In this study, it is shown that localized internal hydride precipitation at the grain boundaries or alpha beta interfaces was not detected by a variety of experimental methods over the range of internal H contents for which IG fracture initiation was observed. It was also shown that grain-boundary alpha colonies or films are not responsible for the IG fracture initiation in the STA condition. A measured increase in hydrogen embrittlement (HE) susceptibility as a function of aging time at 500 °C is consistent with the segregation or depletion of a critical species at the grain boundary. However, grain-boundary segregation/depletion could not be detected with Auger electron spectroscopy (AES) of specimens fracturing in a vacuum. Compression tests used to characterize and compare the alloys’ slip behavior showed that plastic deformation is concentrated at or near the grain boundaries in the STA condition. Therefore, a possible intergranular fracture initiation mechanism that includes the effects of hydrogen and localized deformation is discussed.  相似文献   

17.
α stabilized titanium alloys are known to exhibit embrittlement after long-time exposures above ∼800°F. The time-temperature dependency of this embrittlement phenomenon in the Ti-6Al-2Sn-4Zr-2Mo and Ti-5Al-6Sn-2Zr-lMo-0.25Si alloys was observed using a substandard fracture mechanics test. Room temperature slow-bend tests of fatigue precracked Charpy specimens were used to monitor toughness degradation after unstressed thermal exposures in the temperature range of 800° to 1100°F for times to 5000 hr. The activation energy for the embrittlement process was found to be ∼25 to 28 kcal per g mole, which approximates that for diffusion of aluminum or tin in α-Ti. The embrittlement is attributed to the Ti3X (X = Al, Sn) phase with the rate controlling step that of diffusion controlled growth of the Ti3X phase domains. The embrittlement process is reversible by heat treatment at temperatures above the α + Ti3X two phase region.  相似文献   

18.
The effects of annealing in the α + γ and α2 + γ phase fields on the microstructures and fracture properties of Ti-48A1 and Ti-49Al-3.4Nb are discussed in this article. Annealing of the niobium-containing alloy in the α2 + γ phase field results in the precipitation of ⇌2 and Nb5Si3 predominantly at the grain boundaries. The precipitation decrease the grain boundary cohesion, thereby promoting intergranular separation. Precipitation also decreases the tensile strength and ductility of Ti-49Al-3.4Nb compared to that of the binary alloy. The possible role of interfaces in the transmission of slip is also discussed, and micromechanical models are applied to the prediction of tensile behavior and fracture toughness. Formerly Scientist, McDonnell Douglas Research Laboratories Formerly Director and MDC Fellow, McDonnell Douglas Research Laboratories  相似文献   

19.
The influence of microstructure on the fracture toughness of Ti-23A1-9Nb-2Mo-1Zr-1.2Si (at. pct) and Ti-23A1-11Nb-0.9Si (at. pct) Ti3Al-based alloys has been investigated. Basket-weave microstructures comprising different volume fractions of α 2 and retained β phases were produced by systematic heat treatments. Besides the volume fraction of the retained β phase, the average size of the β laths has also been used to characterize these microstructures. The toughness of both alloys was examined at room temperature, and the brittle transgranular fracture modes were found to be controlled by microstructure. However, the toughness is not determined solely by the volume fraction of the retained β phase, and a linear relationship has been obtained between the fracture toughness and the average size of the retained β laths. It appears therefore that the toughness of Ti3Al-based alloys at room temperature is controlled primarily by the width of retained β laths rather than by the retained β volume fraction.  相似文献   

20.
Single crystals of α-titanium, with small Schmid factors for prismatic slip, have been deformed in tension between 78 and 1120 K. At low temperatures, {1012} twinning has been observed in specimens having the angle between the basal plane and the tensile axis,x B , close to 90 deg, whereas at intermediate orientations withx B = 60 deg and 47 deg twinning occurs on the {1121} planes. A critical resolved shear stress law is not obeyed for either twinning mode. First order prismatic slip in the microstrain region appears to be responsible for the nucleation of {1121 twins. Slip is unlikely a pre-requisite for {1012} twinning. Basal slip without interference from twinning is observed in a variety of orientations at temperatures above 500 K. Plastic flow above 900 K may be described by an equation of the form:γ=Aτ n e-Q/kT The relative ease of basal and prismatic slip in Ti and Zr is discussed in terms of the hcp ⇆ bcc allotropic transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号