首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
赖迪生  李觅  姚瑶  钟一波 《微电子学》2016,46(5):651-654
采用模拟调频方案,设计了一种小型化线性调频微波收发(T/R)组件。该微波T/R组件在实现所需的调频中心频率和带宽的同时,保证了调频稳定度。T/R组件的调频中心频率为(4 300±15) MHz,调制带宽为(150±1) MHz,调制线性度小于1.2,发射功率大于20 dBm,接收噪声系数小于3 dB,收发隔离度大于80 dB。此T/R 组件的尺寸仅为 50 mm×40 mm×12.3 mm,在同类型产品中具有较明显优势。  相似文献   

2.
针对现有雷达高频接收组件尺寸大、集成度不高的情况,采用低温共烧陶瓷(LTCC)多层基板、单片微波集成电路(MMIC)芯片和微组装技术,设计和实现了C波段LTCC高频前端模块。该模块采用二次混频方案,包含限幅器、放大器、滤波器、衰减器、混频器等;其中主要器件用MMIC芯片实现,滤波器埋置在LTCC多层基板中实现,极大减小了模块的尺寸,模块最终尺寸为64 mm×20 mm×1.1 mm,比现有的接收组件尺寸减小了50%。经测试,该LTCC高频前端模块的增益大于40 dB,带内平坦度小于2 dB,噪声系数小于5 dB,镜像抑制度优于51 dB。可将高频前端模块应用于雷达高频接收组件中,从而减小组件尺寸。  相似文献   

3.
基于相控阵雷达的应用需求,利用LTCC多层基板技术,研制了Ku波段四通道T/R组件。该组件通过三维布局实现了组件的小型化和轻量化,同时也保证了射频、电源和控制的信号完整性。通过微带线变换带状线的优化设计,实现了良好的传输性能,提高了四通道信号间的隔离度。腔体内部做了隔墙设计,避免四通道的信号干扰,保证一致性。最终研制实现的小型化Ku波段四通道T/R组件,尺寸仅为70 mm×37.8 mm×11.5 mm,质量约53 g,组件接收增益大于25 dB,噪声系数小于4 dB,发射功率大于16 W。该T/R组件四通道一致性好,性能稳定,具有较好的应用价值。  相似文献   

4.
T/R组件作为雷达系统的最重要部件之一,它的性能直接影响了整个雷达系统的探测效果,T/R组件的小型化、低成本化将大幅度促进雷达系统的发展。本文采用LTCC基片、陶瓷基片等简单成熟工艺,利用高密度封装技术—多芯片组件(Multi-Chip Module,简称为MCM)技术实现了X波段T/R组件的设计。该封装设计具有集成度高、散热性好和可靠性高等特点,可应用于X波段二维有源相控阵T/R子阵的工程研制。  相似文献   

5.
基于陶瓷方形扁平无引脚(QFN)封装研制出4款X波段GaAs微波单片集成电路(MMIC),包括GaAs幅相控制多功能芯片(MFC)、功率放大器、低噪声放大器、开关限幅多功能芯片.利用QFN技术将这套芯片封装在一起,组成2 GHz带宽的QFN封装收/发(T/R)组件,输出功率大于1W,封装尺寸为9 mm×9 mm×1 mm.通过提高GaAsMMIC的集成度、放大器单边加电、内部端口匹配,创新性地实现了微波T/R组件的小型化.这几款芯片中最复杂的X波段幅相控制多功能芯片集成了T/R开关、六位数字移相器、五位数字衰减器、增益放大器及串转并驱动器.在工作频段内,收发状态下,增益大于5 dB,1 dB压缩输出功率(P-1)大于7 dBm,移相均方根(RMS)误差小于2.5.,衰减均方根误差小于0.3 dB,回波损耗小于-12 dB,裸片尺寸为4.5 mm×3.0 mm×0.07 mm.  相似文献   

6.
基于硅基微电子机械系统(MEMS)工艺和三维异构集成技术,研制了一款硅基X波段2×2相控阵T/R组件.该组件采用收发一体多功能芯片方案,将所有器件封装于两层硅基中.其中上层硅基集成了低噪声放大器、功率放大器、开关、电源调制驱动器和PMOSFET等芯片,下层硅基集成了多功能芯片、串/并转换芯片以及逻辑运算芯片;两层硅基封装之间通过植球进行堆叠.最终样品尺寸仅为20 mm×20 mm×3 mm.实测结果显示,在8~ 12 GHz内,该T/R组件饱和输出功率约为29 dBm,接收增益约为21 dB,接收噪声系数小于3 dB,在具备优良射频性能的同时实现了组件的小型化.  相似文献   

7.
传统的超宽带T/R组件采用的是两维砖块式结构,体积和重量已不适应目前小型化、低剖面、易共形的相控阵天线要求。文中提出的基于硅基堆叠系统级封装(SIP)技术,将四通道的射频芯片高度集成在硅基介质基板上,将多层介质基板厚金压合,实现多层堆叠的三维封装。通过采用芯片多功能集成技术和超宽带射频信号的垂直互连技术,设计出三维堆叠的四通道超宽带T/R组件。T/R组件带宽为6 GHz~18 GHz,单通道的发射功率优于23 dBm,接收增益优于20 dB,可实现6位数控衰减及6位数控移相,尺寸仅有13.0 mm×13.0 mm×3.4 mm。该技术可以实现多通道超宽带T/R组件的SIP封装,有利于工程应用。  相似文献   

8.
低温共烧陶瓷 (LTCC)和倒装芯片 (FC)是实现小型化、高可靠微波组件的一种理想的组装和互连技术。文中对带有埋置式电阻的 LTCC微波多层互连基板和倒装芯片组装技术进行了研究 ,以研制出体积小、重量轻、微波性能好的高密度集成化 X波段低噪声放大器。利用商用三维电磁场分析软件 HFSS对集成化低噪声放大器组装和互连中的关键参数进行了仿真和优化。研制出的集成化 X波段低噪声放大器带宽为 1 .6GHz,增益≥ 2 8d B,噪声系数≤ 2 d B,输入 /输出驻波≤ 1 .8,体积仅为 1 2 mm× 6mm× 1 .5 mm。  相似文献   

9.
针对采用有源相控阵技术的高分辨率合成孔径雷达(SAR)应用要求,设计制作了一款尺寸小、重量 轻、厚度薄、可与片式天线阵面相兼容的片式T/ R 组件,对该片式T/ R 组件的接收和发射电路、垂直互连性能进行了 仿真分析,并对该T/ R 组件样机进行测试验证,在X 波段获得的测试结果为:接收增益大于24 dB,噪声系数小于3 dB,发射功率大于1 W,垂直互连的端口驻波小于1. 35,垂直互连的插损小于0. 2 dB。尺寸仅为10 mm×10 mm×5 mm ,可应用于相关工程中。  相似文献   

10.
采用单片微波集成电路(MMIC)芯片技术和多芯片组件(MCM)微组装工艺,设计了一款小尺寸双通道发射接收(T/R)组件.组件由环形器、限幅器芯片、低噪声放大器(LNA)芯片、幅相控制多功能芯片、驱动放大器芯片和功率放大器芯片(PA)等部分构成.基于GaAs的LNA MMIC芯片具有更低噪声系数,基于GaN的PA MMIC芯片具有更高的输出功率及功率附加效率.组件接收通道采用基于GaAs的LNA芯片,发射通道采用基于GaN的PA芯片,设计了针对发射通道驱动放大器与功率放大器的协同脉冲调制电路.研制的T/R组件在8~12 GHz的频带内:接收通道在工作电压+5 V连续波的条件下,小信号增益大于20 dB,噪声小于3 dB;发射通道在周期1 ms,脉宽10%的调制脉冲条件下,脉冲发射功率大于46 dBm.T/R组件外形尺寸为70 mm×46 mm×15 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号