首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
视频摘要是视频内容的一种压缩表示方式。为了能够更好地浏览视频,提出了一种根据浏览或检索的粒度不同来建立两种层次视频摘要(镜头级和场景级)的思想,并给出了一种视频摘要生成方法:首先用一种根据内容变化自动提取镜头内关键帧的方法来实现关键帧的提取;继而用一种改进的时间自适应算法通过镜头的组合来得到场景;最后在场景级用最小生成树方法提取代表帧。由于关键帧和代表帧分别代表了它们所在镜头和场景的主要内容,因此它们的序列就构成了视频总结。一些电影视频片段检验的实验结果表明,这种生成方法能够较好地提供粗细两种粒度的视频内容总结。  相似文献   

2.
采用压缩感知的无线传感网络数据收集方法要求每个节点都参与数据收集,会造成很大的能量浪费.本文提出了一种基于自适应代表节点选择的WSN数据收集方法,在保证压缩感知数据重构精度的同时,减少参与数据收集的节点数.首先,采用主成分分析和混合压缩感知相结合的办法设计稀疏基;然后,通过分析稀疏基的框架势FP(Frame Potential)设计压缩感知的稀疏观测矩阵,从而选择代表节点,以减少参与数据收集的节点数目;最后,根据Sink处数据重构精度,自适应调整稀疏观测矩阵以用作下一时刻数据收集,从而保证数据收集的重构精度.仿真结果表明,该方法有效的降低了网络能耗和数据传输量,同时还保证了每个时刻数据重构的精度.  相似文献   

3.
当前基于多模型的图像集分类方法通过对每个图像集进行单次聚类来提取局部模型,与其他图像集进行匹配时使用固定的聚类。然而,如果环境条件不佳,则可能导致两个最近邻聚类表示同一对象的不同特征。针对这一问题,首先,根据重建误差,在Grassmann流形上定义两个子空间间的Frobenius范数距离。然后,通过稀疏表示从画廊图像集中提取局部线性子空间。对每个局部线性子空间,通过联合稀疏表示,利用探测图像集的样本来自适应构建相应的最近邻子空间。基于Honda、ETH-80和Cambridge-Gesture数据集的实验结果表明,与基于仿射包的图像集距离(AHISD)、稀疏近似最近邻点(SANP)和流形判别分析(MDA)等其他算法相比,算法的性能更优。  相似文献   

4.
文章简要介绍了传统合作型协同进化遗传算法,指出了该算法在代表个体选择方法上的不足,提出了一种新型的代表个体选择方法,并进行了算法性能验证。  相似文献   

5.
陈胜  刘循 《计算机应用》2010,30(2):362-363
在传统的用于图像检索的傅里叶轮廓描述符的基础上,提出了一种新颖的、基于图像轮廓的测地距傅里叶描述符,并在标准图像轮廓数据库MPEG-7上进行了测试。实验结果表明这种轮廓描述符在性能上优于其他基于图像轮廓的傅里叶描述符。  相似文献   

6.
根据对航拍视频进行实时全景图拼接的实际需求,提出一种两阶段的关键帧提取方法。第一阶段利用飞行时间与重叠率的线性关系,以较高重叠率提取准关键帧,第二阶段对准关键帧进行逐帧检测,进一步降低冗余,最后确定关键帧,为全景图拼接做好准备。经实验检验.该方法能够提取出有效关键帧,具有可实用性。  相似文献   

7.
郭三华  方贤勇  罗斌 《计算机应用》2007,27(11):2786-2788
提出了一种视频序列的拼接算法。首先在同一镜头下的视频序列中提取若干关键帧,利用关键帧拼接表示序列的拼接;其次利用光流场算法计算出的运动位移量引导相邻关键帧间特征点的匹配,并结合随机抽样一致性(RANSAC)鲁棒估计算法和单映矩阵的级联性,得到相邻关键帧、非相邻关键帧间的对应矩阵;最后通过融合实现了序列的无缝拼接。实验验证了这种方法的有效性。  相似文献   

8.
一种基于视频聚类的关键帧提取方法   总被引:9,自引:0,他引:9  
朱映映  周洞汝 《计算机工程》2004,30(4):12-13,121
关键帧提取技术是视频分析和基于内容的视频检索的基础。关键帧的使用大大减少了视频索引的数据量,同时也为视频摘要和检索提供了一个组织框架。该文简单介绍了目前的关键帧提取技术,提出了一种基于聚类利用颜色直方图提取关键帧的方法来克服其它方法的不足。实验证明该方法计算量小,可以较好地代表视频内容。  相似文献   

9.
依据目前的研究状况和家庭视频的特点,提出一种适用于家庭视频的基于场景代表帧的视频摘要生成方法.场景代表帧的选取是在提取法得到.最后给出了基于内容的家庭视频摘要系统.  相似文献   

10.
提出了一种高效的视频场景检测方法。首先基于均值漂移,在滑动镜头窗内对各镜头聚类,并获得相应的聚类中心,然后根据电影视频场景的发展模式,计算两个镜头类之间的时序距离,接着基于时空关系进行场景检测,并且由相应的聚类中心获得场景关键帧,最后对场景过分割进行后续处理。实验证实该方法能快速聚类,并且有效地检测出场景和场景关键帧。  相似文献   

11.
Skyline查询在多维决策和数据挖掘等方面发挥重要作用,然而随着数据属性维度的增大, Skyline集变得非常庞大.为克服该不足,提出Skyline代表点查询.文中提出新的评价函数改进Skyline点的得分计算方法以选择k个具有代表性的Skyline点.在二维空间提出动态规划算法(DPBA),利用覆盖圆的性质确定非代表点与代表点间的覆盖距离,迭代计算评价函数值,从而得到k个代表点;在高维空间针对NP-hard问题提出一个基于aR-tree结构的近似解决方法,遍历索引结构中的节点,通过与候选Skyline集比较判断是否被支配进行剪枝,降低计算开销.大量基于合成数据与真实数据的实验证明该算法的有效性.  相似文献   

12.
针对传统图像检索系统通过关键字搜索图像时缺乏语义主题多样性的问题,提出了一种基于互近邻一致性和近邻传播的代表性图像选取算法,为每个查询选取与其相关的不同语义主题的图像集合. 该算法利用互近邻一致性调整图像间的相似度,再进行近邻传播(AP)聚类将图像集分为若干簇,最后通过簇排序选取代表性图像簇并从中选取中心图像为代表性图像. 实验表明,本文方法的性能超过基于K-means的方法和基于Greedy K-means的方法,所选图像能直观有效地概括源图像集的内容,并且在语义上多样化.  相似文献   

13.
CURE算法是一种凝聚的层次聚类算法,它首先提出了使用多代表点描述簇的思想。本文通过对已有的基于多代表点的层次聚类算法特点的分析,提出了一种新的基于多代表点的层次聚类算法WRPC。它使用了基于影响因子的簇代表点选取机制和基于k-近邻方法的小簇合并机制,可以发现形状、尺寸更为复杂的簇。实验结果表明,该算法在保证执行效率的情况下取得了更好的聚类效果。  相似文献   

14.
15.
基于Grassmann流形的多聚类特征选择   总被引:1,自引:0,他引:1       下载免费PDF全文
在无监督聚类特征选择过程中,局部欧氏度量可能置乱局部流形的拓扑结构,影响所选特征的聚类性能。为此,提出一种基于Grassmann流形的多聚类特征选择算法。利用局部主成分分析逼近数据点的切空间,获取局部数据的主要变化方向。根据切空间构造Grassmann流形,通过测地距保留局部数据的流形拓扑结构,以L1范数优化逼近流形拓扑,选择利于聚类的原本数据特征。实验结果验证了该算法的有效性。  相似文献   

16.
王伟  毕笃彦  孙恒义 《计算机工程》2011,37(21):144-145
将流形学习方法应用于飞机图像识别中,提出一种基于改进等距映射(ISOMAP)的飞机识别算法.根据飞机图像数据的高维性质,采用改进的ISOMAP对数据进行降维,在构造近邻图的过程中,利用Procrustes距离取代传统的欧氏距离.仿真实验结果证明,该算法的的识别率较高.  相似文献   

17.
讨论了变长模式识别中的特征选择问题。采用基于测地距离(Geodesic Distance)的非线性插值来进行特征选择.使得变长的模式映射为等长的模式,从而可以使用传统的等长模式的方法来解决变长模式识别问题。用非特定说话人的汉语孤立词识别来验证提出方法的性能,并采用支持向量机(Support Vector Machine,SVM)作为基本的分类方法。实验结果表明,提出的方法可以获得比传统方法诸如线性插值更好的性能,而计算量仅有很少增加。  相似文献   

18.
A geodesic distance-based approach to build the neighborhood graph for isometric embedding is proposed to deal with the highly twisted and folded manifold by Wen et al. [Using locally estimated geodesic distance to optimize neighborhood graph for isometric data embedding, Pattern Recognition 41 (2008) 2226-2236]. This comment is to identify the error in their example and the ineffectiveness of their algorithm.  相似文献   

19.
流形学习中基于局部线性结构的自适应邻域选择   总被引:1,自引:0,他引:1  
近年来,流形学习成为包括机器学习、模式识别和计算机视觉等相关领域的研究热点.流形学习算法中,邻域选择直接关系到算法的性能,而传统的邻域选择算法如k近邻和ε邻域算法存在参数难以确定,所构建邻域不能反映流形学习算法对邻域要求等缺点.提出了一种基于流形局部线性结构的自适应邻域选择算法(ANSLL).首先通过分析现有流形学习算法,总结出构建邻域的两个基本原则:1)同一邻域的所有点都近似地位于某一d维线性子空间内(d为流形维数);2)每个邻域包含尽可能多的点.基于这两个基本原则,ANSLL 算法采用主成分分析技术(PCA)度量有限点集的线性程度,通过邻域压缩或扩张方式自适应地构建邻域.针对邻域线性结构的特点,还提出了一种改进的邻域图构建方法,以提高等度映射(Isomap)算法中测地线距离估计的准确性.最后大量系统的实验表明,ANSLL算法能够依据流形的局部曲率自适应地构建邻域,从而提高大多数流形学习算法(如Isomap和LLE)的性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号