首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents the evaluation process and results associated with two different fault detection and diagnosis (FDD) schemes applied to two different aircraft actuator fault benchmark problems. Although the schemes are different and bespoke for the problem being addressed, both are based on the concept of a second order sliding mode. Furthermore both designs are considered as ‘local’ in the sense that a localized actuator model is used together with local sensor measurements. The schemes do not involve the global aircraft equations of motion, and therefore have low order. The first FDD scheme is associated with the detection of oscillatory failure cases (OFC), while the second scheme is aimed at the detection of actuator jams/runaways. For the OFC benchmark problem, the idea is to estimate the OFC using a mathematical model of the actuator in which the rod speed is estimated using an adaptive second order exact differentiator. For the jam/runaway actuator benchmark problem, a more classical sliding mode observer based FDD scheme is considered in which the fault reconstruction is obtained from the equivalent output error injection signals associated with a second order sliding mode structure. The results presented in this paper summarize the design process from tuning, testing and finally industrial evaluation as part of the ADDSAFE project.  相似文献   

2.
Adaptive dual-layer super-twisting control and observation   总被引:2,自引:0,他引:2  
ABSTRACT

In this paper, a super-twisting-like structure with adaptive gains is proposed. The structure is parameterised by two scalar gains, both of which adapt, and by an additional time-varying term. The magnitudes of the adaptive terms are allowed to both increase and decrease as appropriate so that they are as small as possible, in the sense that they do not unnecessarily over-bound the uncertainty, and yet are large enough to sustain a sliding motion. In the paper, a new time varying gain is incorporated into the traditional super-twisting architecture. The proposed adaption law has a dual-layer structure which is formally analyzed using Lyapunov techniques. The additional term has the effect of simplifying the stability analysis whilst guaranteeing the second-order sliding mode properties of the traditional super-twisting scheme.  相似文献   

3.
This paper presents a new discrete-time super-twisting sliding mode observer with variable gains for sensorless nonsinusoidal vector control of permanent magnet synchronous motors. This observer is adopted to estimate the back electromotive forces (back-EMF) that are required for the rotor speed estimation and for the nonsinusoidal vector control. In addition, their gains are time-varying to minimize the chattering. So, they are adjusted based on internal states of the super-twisting algorithm. The stability analysis is investigated from the Lyapunov theory for discrete-time systems. Finally, simulation and experimental results are presented to demonstrate the good performance and the effectiveness of the proposed observer.  相似文献   

4.
This paper studies the speed tracking control of networked control systems (NCSs) with external disturbance and false data injection (FDI) attacks. First, the system model with external disturbances and FDI attacks is built. Then, an extended observer based on discrete time sliding function and neural network (NN) is proposed to observe the extended states and suppress the effect of external disturbance and FDI attacks. Furthermore, a novel hybrid discrete-time sliding mode control (HDSMC) strategy combining discrete time sliding mode control with super-twisting control is designed to perform closed-loop control of the system, in which the exponential term and nonlinear term are constructed to restrain the jitters. The convergence and reachability of the sliding motion are proofed. Finally, the validity and feasibility of the proposed methods are proved by simulations and experiments.  相似文献   

5.
刘聪  廖开俊  钱坤  李颖晖  丁奇 《控制与决策》2023,38(11):3156-3164
针对一类执行器及传感器同时发生故障的非线性系统,综合鲁棒滑模重构观测器及自适应滑模容错控制器设计技术,提出一体化跟踪主动容错控制方案.首先,将系统增维变换为广义系统,运用广义约束逆引入辅助矩阵,采用线性矩阵不等式设计观测器系数矩阵,综合自适应律给出广义鲁棒滑模观测器设计程式;在此基础之上,通过设计鲁棒滑模微分器估计输出向量微分,结合广义鲁棒滑模观测器状态估计结论,实现执行器及传感器故障同时重构.其次,基于故障重构及状态估计结论,提出自适应滑模的跟踪主动容错控制律设计程式.最后,通过开展飞行模拟转台伺服系统数值仿真,检验一体化跟踪主动容错控制器设计方法的有效性.  相似文献   

6.
针对受外界干扰和执行器故障影响的多航天器姿态协同控制问题,本文设计了一种基于干扰观测器的分布式协同supper-twisting滑模控制器.首先,将各航天器的外界干扰和执行器故障看作一个集总干扰,设计自适应滑模干扰观测器对其进行估计.其次,将supper-twisting算法和积分滑模面相结合,设计一种基于多航天器姿态一致性误差的分布式协同控制器,并由Lyapunov稳定性理论证明了所设计的多航天器姿态可以在有限时间内收敛到平衡点附近的邻域内.最后的仿真研究及比较结果表明,所设计的控制器可以加快系统的收敛速度,并提高系统的控制精度.  相似文献   

7.
ABSTRACT

This paper proposed a new adaptive integral sliding mode FTC scheme to deal with the actuator faults and failure. The scheme combines integral sliding mode control, control allocation scheme and adaptive strategy. The unknown actuator faults are handled by adaptive modulation gain of nonlinear ISMC law. To cope with complete failure, control allocation scheme is integrated with the baseline controller to provide tolerance. The proposed strategy relies on the estimate of actuator effectiveness. Therefore, an adaptive sliding mode observer based fault reconstruction scheme is proposed in this paper. The proposed scheme is implemented on dissimilar redundant actuation system driven by hydraulic and electro-hydraulic actuators. In nominal and faulty conditions, both actuators are contributing to achieving the desired control surface deflection. However, when the actuator failure occurs, the control signals are reallocated to the redundant actuator. The problem of dynamics mismatch is addressed using fractional order controller designed in an inner loop. The comparison with the existing literature is also conducted in the simulation to validate the dominant performance.  相似文献   

8.
A novel super-twisting adaptive sliding mode control law is proposed for the control of an electropneumatic actuator. The key-point of the paper is to consider that the bounds of uncertainties and perturbations are not known. Then, the proposed control approach consists in using dynamically adapted control gains that ensure the establishment, in a finite time, of a real second order sliding mode. The important feature of the adaptation algorithm is in non-overestimating the values of the control gains. A formal proof of the finite time convergence of the closed-loop system is derived using the Lyapunov function technique. The efficiency of the controller is evaluated on an experimental set-up.  相似文献   

9.
本文针对双电机同步驱动伺服系统中执行器失效会导致系统性能下降甚至失稳的情况,提出了一种基于自适应滑模的故障诊断和容错控制策略.该方法通过设计各电机转速的自适应滑模状态观测器,在线估计各执行器的失效因子:当单个执行器部分失效时,通过自适应的方法调整控制器增益;当单个执行器全部失效时,重构系统的控制律.对于系统中存在非匹配不确定项的情况,提出在期望虚拟信号中引入基于扩张状态观测器的补偿项抑制方案;利用Lyapunov理论证明了闭环系统在正常和故障状况下的稳定性以及观测器的收敛性;仿真结果表明,所设计的控制策略能保证系统稳定跟踪指令信号,在单个执行器失效的情况下系统跟踪性能基本不下降.  相似文献   

10.
This paper investigates the problem of adaptive sliding mode control for a class of interval type-2 Itô stochastic fuzzy systems, where the actuator failures may happen. The sliding function is firstly constructed, whose key feature is its dependence on the upper membership functions. And then, an adaptive scheme is proposed to estimate the effectiveness lose values of faulty actuators, and a sliding mode controller based on estimating scheme is designed such that the reachability of the specified sliding surface can be guaranteed even in the presence of actuator failures, in which the lower and upper membership functions are involved. Moreover, the stability conditions of sliding mode dynamics are derived, which involve some coupling terms of Lyapunov matrix and the sliding matrix. By introducing additional matrix variables and employing the cone complementary linearisation algorithm, the above nonlinear stability criterions are decoupled and lastly converted to a minimisation problem with linear constraints. Finally, a numerical example demonstrates the validity of the proposed method.  相似文献   

11.
In this paper, we propose a unit vector control law by output feedback to solve the problem of global exact output tracking for a class of multivariable uncertain plants with nonlinear disturbances. In order to face the nonuniform arbitrary relative degree obstacle, we extend our earlier estimation scheme based on global finite‐time differentiators using dynamic gains to a multivariable architecture. A diagonally stable condition over the system high‐frequency gain (HFG) matrix has to be assumed. Preserving the simplicity of its mono variable framework, variable gain super‐twisting algorithm (STA) is employed to obtain the robust and exact multivariable differentiator. Moreover, state‐norm observers for the unmeasured state variables are constructed to upper bound the disturbances as well as to update the differentiator gains, being both state dependent. Uniform global exponential stability and ultimate exact tracking are proved. As an alternative to chattering alleviation, we appeal to the Emelyanov's concept of binary control in order to obtain a continuous control signal replacing the unit vector function in the controller by a high‐gain gradient adaptive law with parameter projection. As shown in the existing literature for mono variable systems, the proposed multiparameter binary‐adaptive formulation tends to the unit vector control as the adaptation gain increases to infinity, also smoothing the transition from adaptive to sliding mode control. A numerical example is portrayed to illustrate the potentialities of the developed multivariable techniques.  相似文献   

12.
The control effectors of reusable launch vehicle (RLV) can produce significant perturbations and faults in reentry phase. Such a challenge imposes tight requirements to enhance the robustness of vehicle autopilot. Focusing on this problem, a novel finite‐time fault‐tolerant control strategy is proposed for reentry RLV in this paper. The key of this strategy is to design an adaptive‐gain multivariable finite‐time disturbance observer (FDO) to estimate the synthetical perturbation with unknown bounds, which is composed of model uncertainty, external disturbance, and actuator fault considered as the partial loss of actuator effectiveness in this work. Then, combined with the finite‐time high‐order observer and differentiator, a continuous homogeneous second‐order sliding mode controller based on the terminal sliding mode and super‐twisting algorithm is designed to achieve a fast and accurate RLV attitude tracking with chattering attenuation. The main features of the integrated control strategy are that the adaptation algorithm of FDO can achieve non‐overestimating values of the observer gains and the second‐order super‐twisting sliding mode approach can obtain a more elegant solution in finite time. Finally, simulation results of classical RLV (X‐33) are provided to verify the effectiveness and robustness of the proposed fault‐tolerant controller in tracking the guidance commands. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, an adaptive type-2 fuzzy sliding mode control to tolerate actuator faults of unknown nonlinear systems with external disturbances is presented. Based on a redundant actuation structure, a novel type-2 adaptive fuzzy fault tolerant control scheme is proposed using sliding mode control. Two adaptive type-2 fuzzy logic systems are used to approximate the unknown functions, whose adaptation laws are deduced from the stability analysis. The proposed approach allows to ensure good tracking performance despite the presence of actuator failures and external disturbances, as illustrated through a simulation example.  相似文献   

14.
文利燕  陶钢  姜斌  杨杰 《自动化学报》2022,48(1):207-222
本文针对因多重不确定执行器故障而引起系统动态突变的非线性系统,设计了一种基于多模型切换的自适应执行器故障补偿控制策略,以提高系统应对动态突变的能力,同时实现不确定执行器故障的快速精确补偿.针对执行器故障模式的不确定性问题,采用基于多模型的参数估计方法,设计了自适应控制器组;基于最优性能指标函数,提出了一种控制切换机制,...  相似文献   

15.
In this paper, a fault estimation and fault-tolerant control problem for a class of T-S fuzzy stochastic time-delay systems with actuator and sensor faults is investigated. A novel sliding mode observer is proposed, which can simultaneously estimate the system states, actuator and sensor faults with good accuracy. Based on the state and actuator fault estimation, a new sliding mode control scheme is developed, which can effectively eliminate the influence of actuator fault. Sufficient conditions for the existence of the proposed observer and fault-tolerant sliding mode controller are provided in terms of linear matrix inequality, and moreover, the reachability of the sliding mode surface can be guaranteed under the proposed control scheme. The propose sliding mode observer and fault-tolerant sliding mode controller can overcome the restrictive assumption that the input matrix of all local modes is the same. Finally, a numerical example is provided to verify the effectiveness of the proposed sliding mode observer and fault-tolerant sliding mode control technique.  相似文献   

16.
针对一类不确定仿射非线性系统的跟踪控制问题,提出一种基于干扰观测器的有限时间收敛backstepping控制方法.为增强小脑模型(CMAC)泛化和学习能力,将非对称高斯函数和模糊理论相结合,给出非对称模糊CMAC结构,设计干扰观测器实现系统未知复合干扰在线准确逼近;基于非对称模糊CMAC干扰观测器,给出有限时间收敛backstepping控制器设计步骤,利用Lyapunov稳定理论证明闭环系统稳定性,其中采用非线性微分器获取虚拟控制量滤波和微分信息以避免backstepping设计中的微分“膨胀问题”,设计辅助系统修正因微分器带来的误差对系统跟踪性能影响,引入基于障碍型函数的自适应滑模鲁棒项抑制复合干扰估计偏差对跟踪误差的影响;将所提方法应用于无人机飞行控制仿真实验,结果表明所提方法的有效性.  相似文献   

17.
刘泽  万应才  苏宁 《测控技术》2018,37(11):153-158
针对在电液伺服系统跟踪控制中存在非线性不确定参数和外界扰动的问题,提出了一种基于积分微分器的滑模Lyapunov函数的控制方法。首先,在只有位移信号测量输出的情况下,采用高阶积分链式微分器对其速度和加速度信息进行预估。系统存在非线性不确定参数,利用微分器对状态和不确定项的实时估计,设计出积分滑模控制器,实现自适应规律以及对电液伺服系统中不确定扰动的抑制。搭建电液伺服系统AMESim模型并与Matlab构成联合仿真平台,对控制器进行仿真。仿真表明,该控制器具有良好的对非线性不确定参数变化的补偿能力和跟踪性能。  相似文献   

18.
The adaptive fixed-time consensus problem for a class of nonlinear multi-agent systems(MASs) with actuator faults is considered in this paper. To approximate the unknown nonlinear functions in MASs, radial basis function neural networks are used. In addition, the first order sliding mode differentiator is utilized to solve the “explosion of complexity” problem,and a filter error compensation method is proposed to ensure the convergence of filter error in fixed time. With the help of the Nussbaum...  相似文献   

19.
This paper proposes a design method of robust fault reconstruction for a 3‐DOF helicopter with actuator faults and disturbance. The model of the 3‐DOF helicopter considered in this paper is an affine nonlinear system. An adaptive sliding mode observer is firstly proposed such that the actuator fault can be reconstructed through the adaptive law online. Then, based on linear matrix inequalities (LMI), a feasible algorithm is explored to solve the designed parameters. Finally, a simulation study of the 3‐DOF helicopter is presented to show the effectiveness of the scheme.  相似文献   

20.
A feedback linearization‐based adaptive control scheme is developed for multivariable nonlinear systems with redundant actuators subject to uncertain failures. Such an adaptive controller contains a direct adaptive actuator failure compensator to compensate the uncertain actuator failure, a nonlinear feedback to linearize the nonlinear dynamics, and a linear feedback to stabilize the linearized system. The key new design feature is the estimation of both the failure patterns and the failure values, for direct adaptive actuator failure compensation, newly developed for multivariable feedback linearizable nonlinear systems. With direct control signal adaptation, the adaptive failure compensation design ensures closed‐loop stability and asymptotic output tracking in the presence of actuator failure uncertainties. Simulation results from an application to attitude control of a near‐space vehicle dynamic model are presented to verify the desired system performance with adaptive actuator failure compensation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号