首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The speed and reliability of mammalian perception indicate that cortical computations can rely on very few action potentials per involved neuron. Together with the stochasticity of single-spike events in cortex, this appears to imply that large populations of redundant neurons are needed for rapid computations with action potentials. Here we demonstrate that very fast and precise computations can be realized also in small networks of stochastically spiking neurons. We present a generative network model for which we derive biologically plausible algorithms that perform spike-by-spike updates of the neuron's internal states and adaptation of its synaptic weights from maximizing the likelihood of the observed spike patterns. Paradigmatic computational tasks demonstrate the online performance and learning efficiency of our framework. The potential relevance of our approach as a model for cortical computation is discussed.  相似文献   

2.
In timing-based neural codes, neurons have to emit action potentials at precise moments in time. We use a supervised learning paradigm to derive a synaptic update rule that optimizes by gradient ascent the likelihood of postsynaptic firing at one or several desired firing times. We find that the optimal strategy of up- and downregulating synaptic efficacies depends on the relative timing between presynaptic spike arrival and desired postsynaptic firing. If the presynaptic spike arrives before the desired postsynaptic spike timing, our optimal learning rule predicts that the synapse should become potentiated. The dependence of the potentiation on spike timing directly reflects the time course of an excitatory postsynaptic potential. However, our approach gives no unique reason for synaptic depression under reversed spike timing. In fact, the presence and amplitude of depression of synaptic efficacies for reversed spike timing depend on how constraints are implemented in the optimization problem. Two different constraints, control of postsynaptic rates and control of temporal locality, are studied. The relation of our results to spike-timing-dependent plasticity and reinforcement learning is discussed.  相似文献   

3.
4.
We present a new technique for calculating the interspike intervals of integrate-and-fire neurons. There are two new components to this technique. First, the probability density of the summed potential is calculated by integrating over the distribution of arrival times of the afferent post-synaptic potentials (PSPs), rather than using conventional stochastic differential equation techniques. A general formulation of this technique is given in terms of the probability distribution of the inputs and the time course of the postsynaptic response. The expressions are evaluated in the gaussian approximation, which gives results that become more accurate for large numbers of small-amplitude PSPs. Second, the probability density of output spikes, which are generated when the potential reaches threshold, is given in terms of an integral involving a conditional probability density. This expression is a generalization of the renewal equation, but it holds for both leaky neurons and situations in which there is no time-translational invariance. The conditional probability density of the potential is calculated using the same technique of integrating over the distribution of arrival times of the afferent PSPs. For inputs with a Poisson distribution, the known analytic solutions for both the perfect integrator model and the Stein model (which incorporates membrane potential leakage) in the diffusion limit are obtained. The interspike interval distribution may also be calculated numerically for models that incorporate both membrane potential leakage and a finite rise time of the postsynaptic response. Plots of the relationship between input and output firing rates, as well as the coefficient of variation, are given, and inputs with varying rates and amplitudes, including inhibitory inputs, are analyzed. The results indicate that neurons functioning near their critical threshold, where the inputs are just sufficient to cause firing, display a large variability in their spike timings.  相似文献   

5.
Whether cortical neurons act as coincidence detectors or temporal integrators has implications for the way in which the cortex encodes information--by average firing rate or by precise timing of action potentials. In this study, we examine temporal coding by a simple passive-membrane model neuron responding to a full spectrum of multisynaptic input patterns, from highly coincident to temporally dispersed. The temporal precision of the model's action potentials varies continuously along the spectrum, depends very little on the number of synaptic inputs, and is shown to be tightly correlated with the mean slope of the membrane potential preceding the output spikes. These results are shown to be largely independent of the size of postsynaptic potentials, of random background synaptic activity, and of shape of the correlated multisynaptic input pattern. An experimental test involving membrane potential slope is suggested to help determine the basic operating mode of an observed cortical neuron.  相似文献   

6.
We have developed a new pressure sensing tool named pressure-sensitive channel chip (PSCC) by combining the pressure-sensitive paint (PSP) technique with the poly(dimethylsiloxane) (PDMS) micro-molding technique. The PSP technique based on the oxygen quenching of luminescence is a potential diagnostic tool for pressure measurement of micro gas flows. However, the application of PSP to micro scale measurement is very difficult, because the thickness and the surface roughness of conventional PSPs cannot be neglected compared with the characteristic length of micro channels, and the spatial resolution is not enough for micro scale measurements due to the aggregations of luminophore. PSCC is fabricated with PDMS containing a pressure-sensitive luminophore; thus PSCC is a micro channel which itself works as a pressure “distribution” sensor. A micro converging-diverging nozzle with the throat width of 120 μm was demonstrated. The pressure distribution on the nozzle surface was successfully obtained by PSCC without the shortcomings of conventional PSPs.  相似文献   

7.
8.
The precise times of occurrence of individual pre- and postsynaptic action potentials are known to play a key role in the modification of synaptic efficacy. Based on stimulation protocols of two synaptically connected neurons, we infer an algorithm that reproduces the experimental data by modifying the probability of vesicle discharge as a function of the relative timing of spikes in the pre- and postsynaptic neurons. The primary feature of this algorithm is an asymmetry with respect to the direction of synaptic modification depending on whether the presynaptic spikes precede or follow the postsynaptic spike. Specifically, if the presynaptic spike occurs up to 50 ms before the postsynaptic spike, the probability of vesicle discharge is upregulated, while the probability of vesicle discharge is downregulated if the presynaptic spike occurs up to 50 ms after the postsynaptic spike. When neurons fire irregularly with Poisson spike trains at constant mean firing rates, the probability of vesicle discharge converges toward a characteristic value determined by the pre- and postsynaptic firing rates. On the other hand, if the mean rates of the Poisson spike trains slowly change with time, our algorithm predicts modifications in the probability of release that generalize Hebbian and Bienenstock-Cooper-Munro rules. We conclude that the proposed spike-based synaptic learning algorithm provides a general framework for regulating neurotransmitter release probability.  相似文献   

9.
Touboul J 《Neural computation》2011,23(7):1704-1742
Bidimensional spiking models are garnering a lot of attention for their simplicity and their ability to reproduce various spiking patterns of cortical neurons and are used particularly for large network simulations. These models describe the dynamics of the membrane potential by a nonlinear differential equation that blows up in finite time, coupled to a second equation for adaptation. Spikes are emitted when the membrane potential blows up or reaches a cutoff θ. The precise simulation of the spike times and of the adaptation variable is critical, for it governs the spike pattern produced and is hard to compute accurately because of the exploding nature of the system at the spike times. We thoroughly study the precision of fixed time-step integration schemes for this type of model and demonstrate that these methods produce systematic errors that are unbounded, as the cutoff value is increased, in the evaluation of the two crucial quantities: the spike time and the value of the adaptation variable at this time. Precise evaluation of these quantities therefore involves very small time steps and long simulation times. In order to achieve a fixed absolute precision in a reasonable computational time, we propose here a new algorithm to simulate these systems based on a variable integration step method that either integrates the original ordinary differential equation or the equation of the orbits in the phase plane, and compare this algorithm with fixed time-step Euler scheme and other more accurate simulation algorithms.  相似文献   

10.
Permitted and forbidden sets in symmetric threshold-linear networks   总被引:1,自引:0,他引:1  
The richness and complexity of recurrent cortical circuits is an inexhaustible source of inspiration for thinking about high-level biological computation. In past theoretical studies, constraints on the synaptic connection patterns of threshold-linear networks were found that guaranteed bounded network dynamics, convergence to attractive fixed points, and multistability, all fundamental aspects of cortical information processing. However, these conditions were only sufficient, and it remained unclear which were the minimal (necessary) conditions for convergence and multistability. We show that symmetric threshold-linear networks converge to a set of attractive fixed points if and only if the network matrix is copositive. Furthermore, the set of attractive fixed points is nonconnected (the network is multiattractive) if and only if the network matrix is not positive semidefinite. There are permitted sets of neurons that can be coactive at a stable steady state and forbidden sets that cannot. Permitted sets are clustered in the sense that subsets of permitted sets are permitted and supersets of forbidden sets are forbidden. By viewing permitted sets as memories stored in the synaptic connections, we provide a formulation of long-term memory that is more general than the traditional perspective of fixed-point attractor networks. There is a close correspondence between threshold-linear networks and networks defined by the generalized Lotka-Volterra equations.  相似文献   

11.
提出一种基于图像特征的一致点漂移匹配方法进行3维形状点集对齐,在匹配过程中结合点的几何空间信息和图像特征信息构造目标函数,依据点之间的图像特征差异调整原始一致点漂移匹配方法中的高斯混合模型。使用3维前列腺和肝脏点集进行匹配的仿真实验,结果表明本文方法可有效减少匹配误差,其中肝脏点集匹配误差从1.84 mm降低到1.54 mm,前列腺点集匹配误差从0.83 mm降低到0.60 mm。利用本文提出的形状点集对齐方法建立活动外观模型,对3维前列腺CT图像进行分割,分割精度有一定提高,即体素正确覆盖率从88.7%提高到90.2%。  相似文献   

12.
Yang C  Olson B  Si J 《Neural computation》2011,23(1):215-250
Extracellular chronic recordings have been used as important evidence in neuroscientific studies to unveil the fundamental neural network mechanisms in the brain. Spike detection is the first step in the analysis of recorded neural waveforms to decipher useful information and provide useful signals for brain-machine interface applications. The process of spike detection is to extract action potentials from the recordings, which are often compounded with noise from different sources. This study proposes a new detection algorithm that leverages a technique from wavelet-based image edge detection. It utilizes the correlation between wavelet coefficients at different sampling scales to create a robust spike detector. The algorithm has one tuning parameter, which potentially reduces the subjectivity of detection results. Both artificial benchmark data sets and real neural recordings are used to evaluate the detection performance of the proposed algorithm. Compared with other detection algorithms, the proposed method has a comparable or better detection performance. In this letter, we also demonstrate its potential for real-time implementation.  相似文献   

13.
This paper addresses the problem of body mapping in robotic imitation where the demonstrator and imitator may not share the same embodiment [degrees of freedom (DOFs), body morphology, constraints, affordances, and so on]. Body mappings are formalized using a unified (linear) approach via correspondence matrices, which allow one to capture partial, mirror symmetric, one-to-one, one-to-many, many-to-one, and many-to-many associations between various DOFs across dissimilar embodiments. We show how metrics for matching state and action aspects of behavior can be mathematically determined by such correspondence mappings, which may serve to guide a robotic imitator. The approach is illustrated and validated in a number of simulated 3-D robotic examples, using agents described by simple kinematic models and different types of correspondence mappings.  相似文献   

14.
We set forth an information-theoretical measure to quantify neurotransmission reliability while taking into full account the metrical properties of the spike train space. This parametric information analysis relies on similarity measures induced by the metrical relations between neural responses as spikes flow in. Thus, in order to assess the entropy, the conditional entropy, and the overall information transfer, this method does not require any a priori decoding algorithm to partition the space into equivalence classes. It therefore allows the optimal parameters of a class of distances to be determined with respect to information transmission. To validate the proposed information-theoretical approach, we study precise temporal decoding of human somatosensory signals recorded using microneurography experiments. For this analysis, we employ a similarity measure based on the Victor-Purpura spike train metrics. We show that with appropriate parameters of this distance, the relative spike times of the mechanoreceptors' responses convey enough information to perform optimal discrimination--defined as maximum metrical information and zero conditional entropy--of 81 distinct stimuli within 40 ms of the first afferent spike. The proposed information-theoretical measure proves to be a suitable generalization of Shannon mutual information in order to consider the metrics of temporal codes explicitly. It allows neurotransmission reliability to be assessed in the presence of large spike train spaces (e.g., neural population codes) with high temporal precision.  相似文献   

15.
This research investigates the effect of review rate on defect removal effectiveness and the quality of software products, while controlling for a number of potential confounding factors. Two data sets of 371 and 246 programs, respectively, from a Personal Software Process (PSP) approach were analyzed using both regression and mixed models. Review activities in the PSP process are those steps performed by the developer in a traditional inspection process. The results show that the PSP review rate is a significant factor affecting defect removal effectiveness, even after accounting for developer ability and other significant process variables. The recommended review rate of 200 LOC/hour or less was found to be an effective rate for individual reviews, identifying nearly two-thirds of the defects in design reviews and more than half of the defects in code reviews.  相似文献   

16.
Picture sharing activity on social networking sites helps create and maintain social relationships. However, some of these pictures can be undesirable digital traces especially when the person sharing the information (owner) and the person receiving the information (viewer) do not ask the sharing preference of the person who is in the picture (subject). In our exploratory lab study, we asked twenty-nine participants about their picture sharing preference (PSP) towards an owner's act of sharing a photograph containing both the participant (subject) and the owner with a viewer. Our multi-level regression on 5520 data points show that in terms of closeness, a subject feels more comfortable sharing a picture i) as the “closeness between the subject and the owner (SO closeness)” increases and ii) as the “closeness between the subject and the viewer (SV closeness)” increases. In terms of ownership, a subject feels more comfortable with sharing a picture i) when the picture shows a greater number of people as opposed to a smaller number of people, and ii) when the picture is captured at an event held for the viewer or the owner rather than for the subject. In addition, we observed three types of interaction effects on PSP between the following variables: i) SO closeness and SV closeness, ii) SO closeness and num_people, and iii) both types of closeness and event_posessor.  相似文献   

17.
Versatile spectral methods for point set matching   总被引:1,自引:0,他引:1  
This work is concerned with the problem of point set matching over features extracted from images. A novel approach to the problem is proposed which leverages different techniques from the literature. It combines a number of similarity metrics that quantify measures of correspondence between the two sets of features and introduces a non-iterative algorithm for feature matching based on spectral methods. The flexibility of the technique allows its straightforward application in a number of diverse scenarios, thus overcoming domain-specific limitations of known techniques. The proposed approach is tested in a number of heterogeneous case studies: of synthetic nature; drawn from experimental biological data; and taken from known benchmarks in computer vision.  相似文献   

18.
The suprathreshold electrophysiological responses of pyramidal cells have been grouped into large classes such as bursting and spiking. However, it is not known whether, within a class, response variability ranges uniformly across all cells or whether each cell has a unique and consistent profile that can be differentiated. A major difficulty when comparing suprathreshold responses is that slight variations in spike timing in otherwise very similar traces render traditional metrics ineffective. To address these issues, we developed a novel distance measure based on fiducial points to quantify the similarity among traces with trains of action potentials and applied it together with classification techniques to a set of in vitro patch clamp recordings from CA1 pyramidal cells. We tested if responses to repeated current stimulation of a given cell would cluster together yet remain distinct from those of other cells. We found that depolarizing and hyperpolarizing current pulses elicited responses in each cell that clustered and were systematically distinguishable from responses in other cells. The fiducial-point distance measure was more effective than other methods based on spike times and voltage-gradient phase planes. Depolarizing traces were more reliably differentiated than hyperpolarizing traces, and combining both scores was even more effective. These results suggest that each CA1 pyramidal cell has unique properties that can be detected and quantified with methods discussed here. This uniqueness may be due to slight variations in morphology or membrane channel densities and kinetics, or to large, coordinated variations in these elements. Ascertaining the actual sources and their degree of variability is important when constructing network models of neural function to ensure that key mechanisms are robust in the face of variations within these ranges. The analytical tools presented here can assist in constructing detailed cell models to match experimental records to elucidate the sources of electrophysiological variability in neurons.  相似文献   

19.
The availability of automatic tools for inferring semantics of database schemes is useful to solve several database design problems such as that of obtaining cooperative information systems or data warehouses from large sets of data sources. In this context, a main problem is to single out similarities or dissimilarities among scheme objects (interscheme properties). This paper presents graph-based techniques for a uniform derivation of interscheme properties including synonymies, homonymies, type conflicts, and subscheme similarities. These techniques are characterized by a common core: the computation of maximum weight matchings on some bipartite weighted graphs derived using a suitable metrics to measure semantic closeness of objects. The techniques have been implemented in a system prototype. Several experiments conducted with it, and (in part) accounted for in the paper, confirmed the effectiveness of our approach.  相似文献   

20.
Periodic neuronal activity has been observed in various areas of the brain, from lower sensory to higher cortical levels. Specific frequency components contained in this periodic activity can be identified by a neuronal circuit that behaves as a bandpass filter with given preferred frequency, or best modulation frequency (BMF). For BMFs typically ranging from 10 to 200?Hz, a plausible and minimal configuration consists of a single neuron with adjusted excitatory and inhibitory synaptic connections. The emergence, however, of such a neuronal circuitry is still unclear. In this letter, we demonstrate how spike-timing-dependent plasticity (STDP) can give rise to frequency-dependent learning, thus leading to an input selectivity that enables frequency identification. We use an in-depth mathematical analysis of the learning dynamics in a population of plastic inhibitory connections. These provide inhomogeneous postsynaptic responses that depend on their dendritic location. We find that synaptic delays play a crucial role in organizing the weight specialization induced by STDP. Under suitable conditions on the synaptic delays and postsynaptic potentials (PSPs), the BMF of a neuron after learning can match the training frequency. In particular, proximal (distal) synapses with shorter (longer) dendritic delay and somatically measured PSP time constants respond better to higher (lower) frequencies. As a result, the neuron will respond maximally to any stimulating frequency (in a given range) with which it has been trained in an unsupervised manner. The model predicts that synapses responding to a given BMF form clusters on dendritic branches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号