首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 942 毫秒
1.
Abookasis D  Rosen J 《Applied optics》2006,45(25):6533-6538
We describe various techniques to synthesize three types of computer-generated hologram (CGH): the Fresnel-Fourier CGH, the Fresnel CGH, and the image CGH. These holograms are synthesized by fusing multiple perspective views of a computer-generated scene. An initial hologram is generated in the computer as a Fourier hologram. Then it can be converted to either a Fresnel or an image hologram by computing the desired wave propagation and imitating an interference process of optical holography. By illuminating the CGH, a 3D image of the objects is constructed. Computer simulations and experimental results underline the performance of the suggested techniques.  相似文献   

2.
Tanaka K 《Applied optics》2011,50(34):H315-H326
We have developed an encryption method using a computer-generated hologram (CGH) embedded in a dithered image. First, confidential information is converted into a CGH. Next, the CGH data undergo two separate dithering processes in parallel: one corresponding to CGH white pixels and one corresponding to CGH black pixels. The results from both processes are used to form a dither matrix for creating the final dithered and encoded image. In this way, confidential information can be embedded into the image. The confidential information can be extracted using a technique similar to CGH optical reconstruction.  相似文献   

3.
An approximate method for generating computer-generated holograms (CGH) of a 3D object with six times faster speed than the conventional algorithm is presented. In the conventional algorithm, a 3D object is sliced into many layers and treated as a collection of self-illuminated point light source. The propagation process of a light ray from every point of an object to all the points on the hologram plane is simulated and interfered with by the reference beam to form a CGH. In our proposed method, under the assumption that the depth of a 3D object is much smaller than the recording distance, we just need to calculate the oblique distance between the first layer and the hologram plane, and then the oblique distances from the other layers to the hologram plane can be obtained from a simple relation, thus the computational time is much reduced. The CGH is optically reconstructed and the quality of the reconstructed image agrees well with that from the conventional algorithm.  相似文献   

4.
This paper presents a method of testing the effect of computer-generated hologram (CGH) fabrication error in a cylindrical interferometry system. An experimental system is developed for calibrating the effect of this error. In the calibrating system, a mirror with high surface accuracy is placed at the focal axis of the cylindrical wave. After transmitting through the CGH, the reflected cylindrical wave can be transformed into a plane wave again, and then the plane wave interferes with the reference plane wave. Finally, the double-pass transmitted wavefront of the CGH, representing the effect of the CGH fabrication error in the experimental system, is obtained by analyzing the interferogram. The mathematical model of misalignment aberration removal in the calibration system is described, and the feasibility is demonstrated via the simulation system established in Zemax. With the mathematical polynomial, most of the possible misalignment errors can be estimated with the least-squares fitting algorithm, and then the double-pass transmitted wavefront of the CGH can be obtained by subtracting the misalignment errors from the result extracted from the real experimental system. Compared to the standard double-pass transmitted wavefront given by Diffraction International Ltd., which manufactured the CGH used in the experimental system, the result is desirable. We conclude that the proposed method is effective in calibrating the effect of the CGH error in the cylindrical interferometry system for the measurement of cylindricity error.  相似文献   

5.
Chaohong R  Jin Z  Wenqi G 《Applied optics》1997,36(34):8844-8847
A new type of computer-generated hologram (CGH) is described in this research. Upon the base of a two-channel CGH, it can generate four independent images in four different directions with the addition of positive or negative quadratic phase factors on the object spectrum; it has the character of self-focus. Results of the experiment are provided.  相似文献   

6.
7.
Guo Y  Huang Q  Du J  Zhang Y 《Applied optics》2001,40(17):2860-2863
An information-encryption method based on computer-generated hologram (CGH) interference is presented. In this method the original information is decomposed into two parts, and then each part is encoded on a separate CGH. When these two encoded CGHs are aligned and illuminated, a combined interference pattern is formed. The original information is obtained from this pattern. It is impossible to decrypt the original information from one CGH alone; two matched CGHs must be put together to make it available.  相似文献   

8.
Reichelt S  Pruss C  Tiziani HJ 《Applied optics》2003,42(22):4468-4479
A complete absolute interferometric test of axially symmetric aspheres is presented. The method is based on a specially designed computer-generated hologram (CGH) that reconstructs an aspherical wave as well as a spherical auxiliary wave. Since both phase functions have the same symmetry and their pattern is simultaneously encoded, we call this type of multiplex hologram a Twin-CGH. The spherical wave is used for calibration. The aberrations of the spherical auxiliary wave are measured absolutely with either a spherical mirror or an absolute test for Fresnel zone plates. Thus the two types of aberration inherent in the CGH can be identified and separated from each other. The errors of the spherical wave can be transferred to those of the aspherical wave. Two different methods thatuse Twin-CGHs for absolute testing of aspheric surfaces are described. Test procedures are explained, equations are derived, and experimental results are presented. A mutual comparison of the two results and a comparison with the established N-position rotation test are given.  相似文献   

9.
Guo CS  Rong ZY  Wang HT  Wang Y  Cai LZ 《Applied optics》2003,42(35):6975-6979
We propose a new computer-controlled phase-shifting method based on computer-generated holograms (CGHs) displayed on a spatial light modulator (SLM). In this method the accurate phase shifts required in phase-shifting digital holography or interferometry are induced by a suitable transformation of the encoding patterns of the CGH displayed on a SLM. Both the theoretical analysis and the experimental results demonstrate the feasibility of this approach. We also discuss possible applications of this method in the field of interferometric null testing of aspheres.  相似文献   

10.
A conventional method to synthesize diffractive optical elements and computer-generated holograms (CGH's) with high diffraction efficiency relies on an increase of phase levels. To fabricate such a device, one should perform electron-beam (e-beam) lithography with multiple-dose exposures or multiple-step photolithography. Here we describe a one-step method, which is based on the effective medium theory, for the fabrication of a multilevel phase CGH. The phase modulations required in cells of a CGH are constructed by means of dividing these cells into fine (subwavelength) structures. The surface features of these fine structures control their corresponding indices, and their values can be calculated according to the effective medium theory. By proper selection of the fine structures, based on the requirements of the phase modulation of the cells, a CGH with multilevel phases is synthesized when a binary structure is relieved on the dielectric material. Then the CGH can be fabricated by direct e-beam lithography or one-step photolithography through an amplitude mask followed by an ion-etching treatment. The experimental results showed that the reconstructed wave field is in good agreement with that simulated by a computer, indicating the effectiveness of the proposed method.  相似文献   

11.
Zhou P  Burge JH 《Applied optics》2007,46(5):657-663
Aspheric optical surfaces are often tested using computer-generated holograms (CGHs). For precise measurement, the wavefront errors caused by the CGH must be known and characterized. A parametric model relating the wavefront errors to the CGH fabrication errors is introduced. Methods are discussed for measuring the fabrication errors in the CGH substrate, duty cycle, etching depth, and effect of surface roughness. An example analysis of the wavefront errors from fabrication nonuniformities for a phase CGH is given. The calibration of these effects for a CGH null corrector is demonstrated to cause measurement error less than 1 nm.  相似文献   

12.
Ishii Y 《Applied optics》1983,22(22):3491-3499
A new type of polygonal holographic scanner that combines a reflection volume hologram with a computer-generated hologram (CGH) is described. The scanner is free from the aberration of field curvature. Such a scanning system can allow for a compact folded version of the scanner and Bragg diffraction into only a single order. The equations expressing the spatial-variable image distance are derived and are fit to the phase function designated by polynomials incorporated into a CGH in terms of the least-squares method. A reflection scanner with field-curvature correction is made by interfering a diffracted wave front from this CGH with a spherical wave front having scanning focal power through a second plane hologram. Experiments demonstrating the feasibility of this scanner are presented. Raster-scan patterns using a multifaceted scanner are shown. Helpful data on the diffraction efficiency and the spectrally diffracted intensity of reflection holograms are also presented.  相似文献   

13.
Kim SC  Kim JH  Kim ES 《Applied optics》2011,50(19):3375-3382
In this paper, we propose an approach, new to our knowledge, to effectively generate and reconstruct the resolution-enhanced computer-generated hologram (CGH) of three-dimensional (3-D) objects with a significantly reduced in memory size novel look-up table (N-LUT) by taking into account a relationship between the pixel pitch and reconstruction distance of the hologram pattern. In the proposed method, a CGH pattern composed of shifted versions of the principal fringe patterns (PFPs) with a short pixel pitch can be reconstructed just by using the CGH generated with a much longer pixel pitch by controlling the hologram reconstruction distance. Accordingly, the corresponding N-LUT memory size required for resolution-enhanced hologram patterns can be significantly reduced in the proposed method. To confirm the feasibility of the proposed method, experiments are carried out and the results are discussed.  相似文献   

14.
Morris JE  Feldman MR 《Applied optics》1994,33(17):3683-3694
A new method for implementing electrically addressed dynamic optical interconnects is presented. In this approach a phase spatial light modulator (SLM) is combined with a computer-generated hologram (CGH). The phase SLM is used to change the phase of the wave front that illuminates the CGH. Binary orthogonal phase codes are used to address the SLM. The CGH is designed with iterative discrete on-axis encoding so that different wave fronts direct light to different locations. High efficiency can be achieved because of the large number and the small dimensions of pixels in the CGH. The dynamic aspects result from the use of an SLM that may have a relatively small number of relatively large pixels. In this manner a high-efficiency programmable interconnect system with fast reconfiguration time based on current technology devices may be implemented. The CGH-SLM method yields connection efficiencies significantly higher than previous methods that are based on the use of thin optical elements. Simulation results indicate that for switch sizes in the range from 1 × 2 to 1 × 8, connection efficiencies of higher than 1/ √N (where N is the number of possible destinations) are feasible.  相似文献   

15.
Kim T  Burge JH  Lee Y  Kim S 《Applied optics》2004,43(18):3614-3618
A circular null computer-generated hologram (CGH) was used to test a highly paraboloidal mirror (diameter, 90 mm; f number, 0.76). To verify the null CGH test a classic autocollimation test with a flat mirror was performed. Comparing the results, we show that the results of the null CGH test show good agreement with results of the autocollimation test.  相似文献   

16.
Holographic femtosecond laser processing performs high-speed parallel processing using a computer-generated hologram (CGH) displayed on a liquid crystal spatial light modulator. A critical issue is to precisely control the intensities of the diffraction peaks of the CGH. We propose a method of compensating for the spatial frequency response in the design of CGH using the optimal-rotation-angle method. By applying the proposed method, the uniformity of the diffraction peaks was improved. We demonstrate holographic femtosecond laser processing with two-dimensional and three-dimensional parallelism.  相似文献   

17.
Li Y  Rosen J 《Applied optics》2003,42(5):811-819
A method of scale-invariant recognition of three-dimensional (3-D) objects is presented. Several images of the observed scene are recorded under white-light illumination from several different points of view and compressed into a single complex two-dimensional matrix. After filtering with a single scale-invariant filter, the resultant function is then coded into a computer-generated hologram (CGH). When this CGH is coherently illuminated, a correlation space is reconstructed in which light peaks indicate the existence and location of true targets in the tested 3-D scene. The light peaks are detectable for different sizes of the true objects, as long as they are within the invariance range of the filter. Experimental results in a complete electro-optical system are presented, and comparisons with other systems are investigated by use of computer simulation.  相似文献   

18.
It takes an enormous amount of time to calculate a computer-generated hologram (CGH). A fast calculation method for a CGH using precalculated object light has been proposed in which the light waves of an arbitrary object are calculated using transform calculations of the precalculated object light. However, this method requires a huge amount of memory. This paper proposes the use of a method that uses a cylindrical basic object light to reduce the memory requirement. Furthermore, it is accelerated by using a graphics processing unit (GPU). Experimental results show that the calculation speed on a GPU is about 65 times faster than that on a CPU.  相似文献   

19.
Palima D  Daria VR 《Applied optics》2007,46(20):4197-4201
We present what is to our knowledge a novel technique for efficient suppression of the zero-order beam inherent in light patterns projected via phase-only computer-generated holograms (CGHs). Encoding a CGH on a spatial light modulator (SLM) with a limited fill factor produces a disturbing zero-order beam at the optical axis. Here, we propose to derive a CGH, which includes holographic information to project a corrective beam that destructively interferes with the zero-order beam. The CGH for projecting arbitrary light patterns plus a corrective beam are derived using the Gerchberg-Saxton algorithm where the iterations impose both amplitude and phase constraints for the target field pattern at the Fourier plane. As proof of principle, we analyze the viability of the technique by simulating the performance when applied on a practical SLM with a limited fill factor, fixed number of phase-shifting pixels, and wavefront distortion associated with the surface roughness of the SLM.  相似文献   

20.
Gillet JN  Sheng Y 《Applied optics》2002,41(2):298-307
A novel type of multiplexed computer-generated hologram (CGH) is designed with more than one billion of pixels per period. It consists of elementary cells divided into arbitrary-shaped polygonal apertures, the division being identical in all cells. The cells are further digitized into pixel arrays to exploit the huge space-bandwidth product of electron-beam lithography. The polygonal apertures in the same location inside the cells constitute a subhologram. With the Abbe transform that has never, to our knowledge, been used in other CGH designs, the subhologram images (subimages) are obtained with fast Fourier transforms. It is therefore possible to design a multiplexed CGH that has a size thousands of times larger than the manageable size of a conventional CGH designed with the iterative Fourier transform algorithm (IFTA). A much larger object window than that of the conventional CGH can also be achieved with the multiplexed polygonal-aperture CGH, owing to its extremely large dimensions. The multiplexed polygonal-aperture CGH is designed with the novel iterative subhologram design algorithm, which considers the coherent summation of the subimages and applies constraints on the total image, subimages, and subholograms. As a result, the noise appearing in the preceding multiplexed-CGH designs is avoided. The multiplexed polygonal-aperture CGH has a much higher diffraction efficiency than that resulting from either the preceding multiplexed-CGH designs or the conventional CGH designed by the IFTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号