首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conductive polymer poly(neutral red) polymerized on a graphite electrode (PNR/graphite) as a support material was used for catalytic oxidation of ethanol in acidic solution and investigated by electrochemical methods. Pt particles loaded on the surface of PNR/graphite electrode exhibited higher electrocatalytic activity for ethanol oxidation in comparison with Pt particles supported directly on graphite. With the equivalent loading mass of Pt catalyst, the special activity (S A ) at peak a of the Pt/PNR/graphite electrode polymerized for 10 cycles in 5 × 10−4 M NR + 0.5 M H2SO4 solution is 3,478 A C−1 and about 2.20 times higher than that of the Pt/graphite electrode (1,582 A C−1). The results show that the electrochemical performance of Pt catalyst for ethanol oxidation is improved by the addition of PNR  相似文献   

2.
The plasmonic effects of infiltrated silver (Ag) nanoparticles, with different contents, inside a nanostructured TiO2 film on the photovoltaic performance of dye‐sensitized solar cells (DSSCs) are explored. The synthesized Ag nanoparticles are immobilized onto deposited TiO2 nanoparticles by a new strategy using 3‐mercaptopropionic acid (MPA), a bifunctional linker molecule. Transmission electron microscope (TEM) images show that monodispersed Ag and polydispersed TiO2 nanoparticles have an average diameter of 12 ± 3 nm and 5 ± 1 nm, respectively. Moreover, Fourier transform infrared spectroscopy (FTIR) analysis reveals that Ag nanoparticles were successfully functionalized and capped with MPA. Optical studies on the MPA‐capped Ag nanoparticles inside TiO2 film show an increase in the total absorbance of the electrode. Moreover, EIS measurements confirm that MPA‐capped Ag nanoparticles inhibit the charge recombination and improve the stability of nanoparticles in I3?/I? electrolyte. The DSSC assembled with optimal content of MPA‐capped Ag nanoparticles demonstrated an enhanced power conversion efficiency (8.82% ± 0.07%) compared with the pure TiO2 (7.30% ± 0.05%). The increase in cell efficiency was attributed to the enhanced dye light absorption in strength and spectral range due to the surface plasmon resonance of MPA‐capped Ag nanoparticles in the photoanode.  相似文献   

3.
The indirect cathodic reduction of the vat dye indigo (C.I. Vat Blue 1) by cathodically reduced Lawsone (2-hydroxy-1,4-naphthoquinone; C.I. Natural Orange 6) was studied in aq. solution at different pH values. Cyclic voltammetry and spectroelectrochemistry were used to investigate the electrochemical behavior of 2-hydroxy-1,4-naphthoquinone at a hanging mercury drop electrode. The cathodic peak potential (Ep)d measured at 0.1 mM lawsone solution at a scan rate of 50 mV s?1 changed from ?425 mV at pH 7, to ?730 mV at pH 11.5 and ?750 mV at pH 13 (vs. Ag/AgCl, 3 M KCl). Particularly at pH values of 8–9 and 11.5–13 voltammograms indicated successful, indirect cathodic reduction of the dye in which the cathodically reduced 2-hydroxy-1,4-naphthoquinone acted as soluble mediator. The linear relationship obtained for (Ip)d vs. v1/2 is indicative of a diffusion-controlled electrode reaction mechanism. In the presence of dispersed indigo, the overall cathode reaction is similar to the Ecat process with continuous regeneration of the electroactive species. Spectrochemical experiments were used to prove the indirect cathodic reaction of dispersed vat dyes by 2-hydroxy-1,4-naphthoquinone.  相似文献   

4.
A large CoS-implanted graphene (G-CoS) film electrode was prepared using chemical vapor deposition followed by successive ionic layer absorption and reaction. HRTEM and AFM show that CoS nanoparticles are uniformly implanted on the graphene film. Furthermore, the G-CoS electro-catalytic electrode is characterized in a dye sensitized solar cells (DSSC) and is found to be highly electro-catalytic towards iodine reduction with low charge transfer resistance (Rct ~5.05 Ω cm2) and high exchange current density (J0~2.50 mA cm?2). The improved performance compared to the pristine graphene is attributed to the increased number of active catalytic sites of G-CoS and highly conducting path of graphene. The comprehensive G-CoS synthesis process is a simple and scalable process which can easily adapt for large scale electro-catalytic film fabrication for several other electro-chemical energy harvesting and storage applications.  相似文献   

5.
《Ceramics International》2022,48(1):212-223
Defects in the perovskite films impose a serious issue on the PCE and stability of the SnO2 based planar perovskite solar cells (SP–PSCs). So far, most researches have focused on regulating the SnO2/perovskite interface to improve performance. However, defect passivation of the perovskite/HTM interface is more significant and potential. Herein, the non-toxic and cheap choline chloride was performed to passivate multiple defects of the MAPbI3/HTM interface in ambient atmosphere. An optimal PCE of 19.93% (the average PCE was 18.60%) was obtained for the passivated device. Furthermore, the effect and mechanism of choline chloride on the humid and thermal stability of the SP-PSCs was investigated in detail. The passivated device without encapsulation retained 91% of its initial efficiency after 20 days in humid environment (20 ± 5 °C, 55 ± 5% RH) and 95% of the initial value under heating for 7 cycles (85 °C). Chloride ions with smaller radius and larger electronegativity formed stronger ionic bonding with Pb2+ to passivate I? vacancy defects, while choline ions passivated MA+ vacancies. This work not only provides guidance for fabrication of an efficient and stable device in air, but also opens an avenue to understanding of relation between stability and defects in the SP-PSCs.  相似文献   

6.
《Ceramics International》2017,43(2):1688-1694
In this work, we report synthesis of SnO2@MnO2 nanoflakes grown on nickel foam through a facile two-step hydrothermal route. The as-obtained products are characterized by series of techniques such as scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The as-obtained SnO2@MnO2 nanoflakes are directly used as supercapacitor electrode materials. The results show that the electrode possesses a high discharge areal capacitance of 1231.6 mF cm−2 at 1 mA cm−2 and benign cycling stability with 67.2% of initial areal capacitance retention when the current density is 10 mA cm−2 after 6000 cycles. Moreover, the heterostructured electrode shows 41.1% retention of the initial capacitance when the current densities change from 1 to 10 mA cm−2, which reveals good rate capability. SnO2@MnO2 nanoflakes products which possess excellent electrochemical properties might be used as potential electrode materials for supercapacitor applications.  相似文献   

7.
Electrochemical decolourisation of Reactive Orange 16 was carried out in an electrochemical flow-cell, using as working electrodes a Pt thin film deposited on a Ti substrate (Pt/Ti) prepared by the Pechini method and a pure platinum (Pt) foil. Using the Pt/Ti electrodes better results for dye decolourisation were obtained under milder conditions than those used for pure Pt. For the Pt electrode, colour removal of 93 % (λ = 493 nm) was obtained after 60 min, at 2.2 V vs. RHE, using 0.017 mol L−1 NaCl + 0.5 mol L−1 H2SO4 solution. For the Pt/Ti electrode there was better colour removal, 98%, than for the Pt electrode. Moreover, we used 0.017 mol L−1 NaCl solution and the applied potential was 1.8 V. Under this condition after 15 min of electrolysis, more than 80% of colour was removed. The rate reaction constant, assuming a first order reaction, was 0.024 min−1 and 0.069 min−1, for Pt and Pt/Ti electrodes, respectively.  相似文献   

8.
Ru(bpy)3Cl2 was used to modify the glass carbon electrodes (GCE) by oxidation and co-deposition on the electrode surface. The modified electrodes were characterized by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). About 2.2 × 10−9 mol Ru(bpy)3 2+ was immobilized on the GCE surface (ϕ = 4 mm). The modified GC electrodes showed stable electrochemiluminescence with tripropylamine (TPrA) as the co-reactant with a linear range from 10 to 500 μM (R 2 = 0.999). Among the 10 amino acids tested, the modified electrode system showed selective response to arginine and lysine, indicating that the molecular structure played an important role as co-reactant. This simple and sensitive electrode modifying method when combined with flow-injection or liquid chromatography systems has the potential for amino acid analyses.  相似文献   

9.
This study is a report on the photo electro adsorption (PEA) decolorization of a mixture of three azo dyes, i.e., Acid Red 88 (AR88), Acid Blue 92 (AB92), and Acid Orange 2 (AO2) with polyaniline-modified electrode as a conductive polymer. Aniline was electropolymerized on steel electrode by being immersed in a solution containing HClO4 as the supporting electrolyte and NaClO4 as the dopant. This modified electrode was then used in a non-continuous reactor using UV irradiation for the decolorization of azo dyes. To obtain the best conditions for high decolorization efficiency, experiments were carried out at different operational conditions, including initial dye concentration, pH, and bias potential. The morphology of polyaniline film was analyzed by scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectrum was obtained to characterize polyaniline and dyes. Energy consumption was calculated to be 3.6 kWh/m3 after 36 min of treatment process. Maximum removal of 96% was achieved for the mixture of AR88, AB92, and AO2 in aqueous solution at pH 5, initial dye concentration of 30 mg L−1, and bias potential of 1.3 V after 40 min of PEA process. The results indicate that the PEA process could be effectively applied to the removal of industrial effluents.  相似文献   

10.
《Ceramics International》2021,47(22):31084-31091
Cobalt oxide nanobundle arrays (denoted as CoO) consisting of nanorods were homogeneously grown around the stainless steel wire mesh (SSWM) through a simple hydrothermal synthesis and subsequent heat treatment. The highly dispersed CoO can act as a supporting platform for the deposition of manganese oxide (MnO2) nanoflakes to engineer a CoO@MnO2 core-shell array structure. Without the CoO supports, the MnO2 was found to be prone to form aggregated nanoflakes on the SSWM substrate. CoO arrays with a one-dimensional nanorod skeleton can mitigate the aggregation of two-dimensional MnO2 nanoflakes. The CoO@MnO2 core-shell arrays integrate the advantages of abundant active edge sites, conductive networks for charge transfer, and pore channels for easy transport of electrolyte. The CoO@MnO2 electrode realizes a larger charge-storage capacity than the pristine MnO2 electrode in an aqueous sodium sulfate solution (1 M). The specific capacitances of CoO@MnO2 under 0.15 mA cm-2 and 7.50 mA cm-2 reach 79 mF cm-2 and 53 mF cm-2, respectively, much more than that of MnO2 (31 mF cm-2 and 20 mF cm-2). The CoO@MnO2 core-shell electrode shows a definite improvement in supercapacitive behavior compared to the pristine MnO2 electrode, resulting from reduced charge- and mass-transfer resistance during charge-storage process.  相似文献   

11.
The performances of the Ti-Pt/β-PbO2 and boron-doped diamond (BDD) electrodes in the electrooxidation of simulated wastewaters containing 85 mg L−1 of the Reactive Orange 16 dye were investigated using a filter-press reactor. The electrolyses were carried out at the flow rate of 7 L min−1, at different current densities (10-70 mA cm−2), and in the absence or presence of chloride ions (10-70 mM NaCl). In the absence of NaCl, total decolourisation of the simulated dye wastewater was attained independently of the electrode used. However, the performance of the BDD electrode was better than that of the Ti-Pt/β-PbO2 electrode; the total decolourisations were achieved by applying only 1.0 A h L−1 and 2.0 A h L−1, respectively. In the presence of NaCl, with the electrogeneration of active chlorine, the times needed for total colour removal were markedly decreased; the addition of 50 mM Cl or 35 mM Cl (for Ti-Pt/β-PbO2 or BDD, respectively) to the supporting electrolyte led to a 90% decrease of these times (at 50 mA cm−2). On the other hand, total mineralization of the dye in the presence of NaCl was attained only when using the BDD electrode (for 1.0 A h L−1); for the Ti-Pt/β-PbO2 electrode, a maximum mineralization of 85% was attained (for 2.0 A h L−1). For total decolourisation of the simulated dye wastewater, the energy consumption per unit mass of dye oxidized was only 4.4 kWh kg−1 or 1.9 kWh kg−1 using the Ti-Pt/β-PbO2 or BDD electrode, respectively. Clearly the BDD electrode proved to be the best anode for the electrooxidative degradation of the dye, either in the presence or absence of chloride ions.  相似文献   

12.
The possible use of an electrode modified with electroactive conductive poly(3-methylthiophene) (PMeT)/Nafion as a chemical sensor was investigated for the voltammetric analysis of Dopamine (DA). The electrochemical behavior of dopamine was examined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. By using a PMeT-modified glassy carbon (GC/PMeT) electrode, DA and Ascorbic Acid (AA) signals could be separated but the AA at high concentrations still caused significant interference by overlapping the DA peak. In comparison to the GC/PMeT electrode, the glassy carbon (GC/Nafion/PMeT) electrode modified with hybrid film Nafion/PMeT was found to permit a superior separation by shifting the oxidation of AA peak toward the less positive potential. The DPV curves for a mixture of DA and AA at an GC/Nafion/PMeT electrode in a 0.1 M H2SO4 solution showed peaks of DA and AA, at 0.45 and 0.21 V, respectively, indicating that the difference in the oxidation potential was 240 mV. In the 0.1 M H2SO4 solution, the oxidation peak current on the differential pulse voltammograms for the GC/PMeT electrode increased linearly with the concentration of DA in the range 1 × 10−6 to 1 × 10−3 M, and the oxidation peak current on the differential pulse voltammograms for the GC/Nafion/PMeT electrode in the range 5 × 10−7 to 2 × 10−4 M. The DA detection sensitivity of the GC/Nafion/PMeT electrode (26.7 μA μM−1 cm−2) was 22 times higher than that of the GC/PMeT electrode (1.21 μA μM−1 cm−2).  相似文献   

13.
The world population is severely affected by water scarcity, and it is an alarming issue that needs to be addressed urgently. Seawater desalination by solar-driven evaporation is a promising technique to produce clean water. However, it is energy intensive and directs to a low water yield under natural sunlight. Therefore, the developments of new photothermal materials can reduce required energy for desired evaporation rates for efficient freshwater yield. Indeed, chitosan and polypyrrole-based polymers are natural cationic copolymers, and their nanocomposites present well deal of interest for hydrogel structures due to their hydratable skeletons, and solar-absorbing nature. Here, we report in situ polymerized Fe2O3@PPy/chitosan hydrogels as lightweight evaporation structures for solar-powered evaporation under brine solutions (3.5 wt%). The polymeric network of Fe2O3@PPy/chitosan hydrogels builds in cross-linked macroporous water channels, self-floating, and a wide range of omnidirectional solar absorption (96%). The state-of-the-art evaporation experiments demonstrate an efficient evaporation rate of water (1.80 kg m–2 h–1) and enhanced solar-to-vapor conversion efficiency (91%) as compared to other carbon-based evaporation structures, excluding heat losses under 1 kW m–2 (one sun). Of note, the ultra-black hydrogel surface stored enough thermal energy (39.6°C) under one sun solar irradiance due to the cationic polymeric network of Fe2O3@PPy/chitosan. A single-step process for a freshwater supply that has been purified from various contaminants shows the potential of this device for real-world applications.  相似文献   

14.
A film of iridium and tin dioxides doped with antimony oxide (IrO2‐SnO2‐Sb2O5) was deposited onto Ti mesh and plate substrates by the Pechini method. The electrode surface morphology and composition were characterized by SEM‐EDS. The ternary oxide coating was used for the anodic oxidation of methyl orange (MO) azo dye. Linear sweep voltammetry was used to identify the electrode potentials that favour MO degradation. Batch electrolyses were then carried out at a constant electrode potential of 1.5, 1.75 and 2.0 V vs. SHE using either a three‐electrode batch cell or a flow reactor. The dye solutions were totally decolorized via reactive oxygen species, such as ?OH, H2O2 and O3 formed in situ from water oxidation at the Ti/IrO2‐SnO2‐Sb2O5 surface.  相似文献   

15.
The etching strategy of metal-organic frameworks is an effective process to prepare hollow electrode materials for enhanced electrochemical performance. But the relatively low conductivity of these electrode materials limits their further application. In this work, a series of carbon quantum dots (CQDs) embedded ZIF-67 precursors (ZIF-67@CQDs-X, X = 1.25, 2.50, 5.00, 7.50) are synthesized firstly. Then, by a facile and controllable chemical etching process, the CQDs doped α-Co/Ni(OH)2 hollow nanocages (α-Co/Ni(OH)2@CQDs-X, X = 1.25, 2.50, 5.00, 7.50) are successfully constructed. The optimized α-Co/Ni(OH)2@CQDs-2.50 electrode delivers a high specific surface area (277.99 m2 g−1) and dramatically enhanced conductivity. Therefore, α-Co/Ni(OH)2@CQDs-2.50 electrode presents a high specific capacitance (700 C g−1, 1 A g−1), superior rate performance (550 C g−1, 10 A g−1) and excellent cycling lifespan (retaining 79.93% of initial capacitance after 10 000 cycles). Coupled with the high-performance PPD/rGO as a negative electrode, the fabricated Co/Ni(OH)2@CQDs-2.50//PPD/rGO device exhibits an outstanding energy density of 57.29 Wh kg−1 at the power density of 0.375 kW kg−1. It is proved that the CQDs embedding and chemical etching strategy are an effective way for constructing hollow materials with enhanced energy storage performance.  相似文献   

16.
Surface modification is an effective method for improving the high-voltage cycling stability of LiCoO2. In this work, lithium carbonate (Li2CO3), the main component of solid electrolyte interphase (SEI) films, is selected as the coating material to modify LiCoO2 composite electrodes by a wet chemical method, and the effect of the Li2CO3 coating time on the electrochemical performance of the LiCoO2 electrode is investigated. Results show that the Li2CO3 coating significantly improves the cycling performances and initial coulombic efficiencies of the LiCoO2 electrodes in the potential range of 3.0–4.5 V. The electrode with a coating time of 2 min exhibits the best electrochemical performance, in which the capacity retention rate is 90.9% after 100 cycles at 0.2C while the initial coulombic efficiency is 90.04%, whereas the capacity retention rate and initial coulombic efficiency of the uncoated electrode are only 73.11% and 74.66%, respectively. The capacity of the electrode with the 2-min coating reaches 134.3 mA h g?1 after 500 cycles, while that of the uncoated electrode is only 37.7 mA h g?1 under the same conditions. The results of cyclic voltammetry, electrochemical impedance spectroscopy, X-ray diffraction, and scanning electron microscopy show that the Li2CO3 coating stabilizes the electrode surface and structure to effectively inhibit the increase in electrode polarization.  相似文献   

17.
We have investigated the Hg2+ transport from Crystal Violet Lactone to Fluoran dye based on the association constant, Kass. Upon addition of Hg2+, the Crystal Violet Lactone shows a new peak at around 603 nm, and the color of the solution changed from colorless to blue. With the addition of Fluoran dye in this solution containing Crystal Violet Lactone and Hg2+, the absorption intensity of Fluoran dye at 447 nm and 586 nm was all increased. So the color of solution gradually became black from blue color. From the changes of the ratio A586/A447, it is apparent that the Hg2+ in Crystal Violet Lactone-Hg2+ was transported to colored Fluoran. The Hg2+ transport from Crystal Violet Lactone to Fluoran dye was also carried out by the calculation of the association constant: the binding ability for the complex formation of Fluoran dye and Crystal Violet Lactone-Hg2+ is much greater in CH3CN solution (Kass = 3.0 × 104 M−1) than that of the Crystal Violet Lactone with Hg2+ (Kass = 1.2 × 103 M−1).  相似文献   

18.
The decolorization and degradation of an organic dye, Reactive Orange 7 (RO7) in aqueous media by electrochemical oxidation process using Ti/Sb–SnO2 electrode as anode was modeled and optimized using response surface methodology (RSM) based on central composite design (CCD). The anode electrode was prepared using dip-coating and thermal decomposition method. Accordingly reduced quadratic model was developed to give the substrate color removal efficiency percentage as function of effective parameters such as: initial dye concentration, pH of the solution, electrolyte concentration and current density. The fit of the model is checked by the determination coefficient (R2). In this case, the value of the determination coefficient (R2 = 0.9949) is indicated. Maximum color removal efficiency was achieved at the obtained conditions of: pH = 4, concentration of electrolyte = 3.5 g/L and current density = 19 mA/cm2. Dye removal rate increased by increasing the concentration of electrolyte, lowering pH and increasing the current density. In optimum conditions, decolorization was obtained completely after 5 min; and the removal of chemical oxygen demand (COD) was reduced to 70.3% after 90 min.  相似文献   

19.
《Ceramics International》2023,49(4):5646-5656
It is not an easy way to design composite electrodes with a high concentration of the constituent. This study cleverly exploited the phase transformation of molybdenum oxide to synthesize three-dimensional carbon-based endogenous-exogenous MoO2 composites (EEC) by a two-step process. MC-15 exhibited the most outstanding electrochemical performance among EEC, with a specific capacitance up to 411.1 F g?1 in Na2SO4, due to the design of MoO2, which could be highly loaded with three-dimensional carbon. In addition, the electrode capacitance remains up to 94.1% after 5000 cycles, attributed to the synergy effect of three-dimensional carbon and molybdenum dioxide by providing an abundance of active sites for MoO2 and overcoming its stacking. In this way, the electrochemical properties of the EEC electrode are not compromised by the volume expansion during the electrochemical process. The energy density of the asymmetric supercapacitor using this material as the negative electrode and MnO2@CC is 14 W h kg?1 at a power density of 802 W kg?1, showing a significant increase in energy density over the asymmetric supercapacitor with a conventional negative electrode (activated carbon, energy density of 3.36 W h kg?1 and power density of 700 W kg?1). Its specific capacitance remained 84.9% after 2500 cycles. In addition, an overpotential of only 348 mV was required to drive oxygen evolution in alkaline electrolytes with a Tafel slope as low as 88.7 mV dec?1; the 20 h stability test retains almost 100%. The results show that the design optimization of the negative electrode material provides a simple and effective strategy to increase the energy density of supercapacitors, and EEC electrode materials are a great candidate to be utilized in supercapacitors with excellent performance as well as electrolytic water.  相似文献   

20.
《Ceramics International》2021,47(19):26758-26767
Titanium nitride (TiN) is widely used in electrode materials in fast charging/discharging supercapacitors (SCs) due to its outstanding conductivity. However, the low capacitance of the TiN electrode limits its further application in the SCs. Therefore, the reasonable design of the TiN electrode with high electrochemical and mechanical properties is still a challenge. In this paper, the silicon nanowires/titanium nitride electrode (Si NWs/TiN) is prepared by depositing TiN onto the etched Si nanowires by direct current magnetron sputtering. The Si NWs are prepared by etching silicon in 4.8 M HF/0.02 M AgNO3 aqueous solution for different times (5 min, 15 min, 30 min, 60 min). The mechanism of the effect of etched silicon substrate morphology on the electrochemical performance of Si NWs/TiN electrode was studied. As the etching time increases, the differences of the TiN surface structure, lattice defects and surface chemical composition will change the capacitance performance and charge storage mechanism of the Si NWs/TiN electrode. The prepared Si30 NWs/TiN electrode exhibits an outstanding specific capacitance as high as 113.55 F g−1 at a scan rate of 5 mV s−1 with 0.5 M H2SO4 solution as electrolyte. The specific capacitance of the Si30 NWs/TiN electrode is as high as 7.5 times that of the electrode without etching at 100 mV s−1. The Si30 NWs/TiN electrode has an excellent cyclic stability performance, which the electrode has a decay rate of 12.4% after 2000 cycles. This indicates that the electrode has reliable stability. The electrode of the supercapacitor prepared by this method can open up a new way to expand the specific surface area of other transition metal nitride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号