首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
利用室温下反应磁控溅射的方法在p-Si(100)衬底上制备了HfO2栅介质层,研究了HfO2高k栅介质的电流传输机制和应力引起泄漏电流(SILC)效应.对HfO2栅介质泄漏电流输运机制的分析表明,在电子由衬底注入的情况下,泄漏电流主要由Schottky发射机制引起,而在电子由栅注入的情况下,泄漏电流由Schottky发射和Frenkel-Poole发射两种机制共同引起.通过对SILC的分析,在没有加应力前HfO2/Si界面层存在较少的界面陷阱,而加上负的栅压应力后在界面处会产生新的界面陷阱,随着新产生界面陷阱的增多,这时在衬底注入的情况下,电流传输机制就不仅仅是由Schottky发射机制引起,而存在Frenkel-Poole发射机制起作用.同时研究表明面积对SILC效应的影响很小.  相似文献   

2.
随着MOS器件按比例缩小,MOS器件的可靠性问题正成为限制器件性能的一大瓶颈。作为可靠性研究的一个热点和难点,MOS器件栅介质可靠性的研究一直是学术界和工业界研究的重点。普遍认为,栅介质中的陷阱是引起栅介质退化乃至击穿的主要因素,对栅介质中陷阱信息的准确提取和分析将有助于器件性能的优化、器件寿命的预测等。针对几十年来研究人员提出的各种陷阱表征方法,在简单介绍栅介质中陷阱相关知识的基础上,对已有的界面陷阱和氧化层陷阱表征方法进行系统的调查总结和分析,详细阐述了表征技术的新进展。  相似文献   

3.
HfO_2高k栅介质漏电流机制和SILC效应   总被引:3,自引:2,他引:3  
利用室温下反应磁控溅射的方法在 p- Si(1 0 0 )衬底上制备了 Hf O2 栅介质层 ,研究了 Hf O2 高 k栅介质的电流传输机制和应力引起泄漏电流 (SIL C)效应 .对 Hf O2 栅介质泄漏电流输运机制的分析表明 ,在电子由衬底注入的情况下 ,泄漏电流主要由 Schottky发射机制引起 ,而在电子由栅注入的情况下 ,泄漏电流由 Schottky发射和 Frenkel-Poole发射两种机制共同引起 .通过对 SIL C的分析 ,在没有加应力前 Hf O2 / Si界面层存在较少的界面陷阱 ,而加上负的栅压应力后在界面处会产生新的界面陷阱 ,随着新产生界面陷阱的增多 ,这时在衬底注入的情况下 ,电流传  相似文献   

4.
在溅射淀积HfO2栅介质之前,采用NO、N2O、O2+CHCCl3(TCE)进行表面预处理。结果表明,预处理能改善界面和近界面特性,减小界面层厚度,尤其是新颖的TCE+少量O2的表面处理工艺,能有效抑制界面层的生长,大大降低界面态密度,减小栅极漏电流。其机理在于TCE分解产生的Cl2和HCl能有效地钝化界面附近Si悬挂键和其它结构缺陷,并能去除离子污染。  相似文献   

5.
基于流体动力学能量传输模型,研究了深亚微米槽栅结构MOSFET对小尺寸效应的影响,并与相应平面器件的特性进行了比较。研究结果表明,由于栅介质拐角效应的存在,槽栅结构在深亚微米区域能够很好地抑制小尺寸带来的短沟道效应、漏感应势垒降低等效应,且很好地降低了亚阈特性的退化,器件具有较好的输出特性和转移特性。  相似文献   

6.
利用磁控溅射的方法在p-Si上制备了高k(高介电常数)栅介质HfO2薄膜的MOS电容,对薄栅氧化层电容的软击穿和硬击穿特性进行了实验研究.利用在栅极加恒电流应力的方法研究了不同面积HfO2薄栅介质的击穿特性以及击穿对栅介质的I-V特性和C-V特性的影响.实验结果表明薄栅介质的击穿过程中有很明显的软击穿现象发生,与栅氧化层面积有很大的关系,面积大的电容比较容易发生击穿.分析比较了软击穿和硬击穿的区别,并利用统计分析模型对薄栅介质的击穿机理进行了解释.  相似文献   

7.
任瑞涛  杨康 《电子技术》2007,34(11):127-128
随着集成度的不断提高,集成电路的绝缘层越来越薄.如CMOS器件绝缘层的典型厚度约为0.1μm,其相应的耐击穿电压在80~100V间.当器件特征尺寸进人深亚微来时,栅氧化层厚度仅为数纳米,而器件工作的电源电压却不宜降低,这使栅氧化层工作在较高的电场强度下,栅氧化层的抗电性能成为一个突出的问题.往往一个能量不算大的电磁脉冲,就可以让集成电路的栅氧击穿,将直接导致MOS器件的失效.  相似文献   

8.
采用金属有机化学气相沉积(MOCVD)方法在(010) Fe掺杂半绝缘Ga2O3同质衬底上外延得到n型β-Ga2O3薄膜材料,材料结构包括400 nm的非故意掺杂Ga2O3缓冲层和40 nm的Si掺杂Ga2O3沟道层.基于掺杂浓度为2.0×1018 cm-3的n型β-Ga2O3薄膜材料,采用原子层沉积的25 nm的HfO2作为栅下绝缘介质层,研制出Ga2O3金属氧化物半导体场效应晶体管(MOSFET).器件展示出良好的电学特性,在栅偏压为8V时,漏源饱和电流密度达到42 mA/mm,器件的峰值跨导约为3.8 mS/mm,漏源电流开关比达到108.此外,器件的三端关态击穿电压为113 V.采用场板结构并结合n型Ga2O3沟道层结构优化设计能进一步提升器件饱和电流和击穿电压等电学特性.  相似文献   

9.
通过工艺模拟和实验,在引入多晶硅栅等效电容概念的基础上,建立了MOS器件亚阈特性的修正模型,并讨论了多晶硅杨高于往入杂质类型对器件亚阈特性的影响。采用常规1μmNMOS工艺制备的晶体管使用了两种源漏、多晶硅栅掺杂方案──P、As用于比较,每一硅片上均包含四种几何尺寸不同的NMOS管。测量所得的亚阈特性参数与模拟及修正模型推导结果相一致,进一步证明了模型与实际器件的统一。  相似文献   

10.
研究了淀积后退火(PDA)工艺(包括退火环境和退火温度)对高介电常数(k)HfO2栅介质MOS电容(MOSCAP)电学特性的影响.通过对比O2和N2环境中,不同退火温度下的HfO2栅介质MOSCAP的C-V曲线发现,高kHfO2栅介质在N2环境中退火时具有更大的工艺窗口.通过对HfO2栅介质MOSCAP的等效氧化层厚度(dEOT)、平带电压(Vfb)和栅极泄漏电流(Ig)等参数进一步分析发现,与O2环境相比,高kHfO2栅介质在N2环境中PDA处理时dEOT和Ig更小、Vfb相差不大,更适合纳米器件的进一步微缩.HfO2栅介质PDA处理的最佳工艺条件是在N2环境中600℃下进行.该优化条件下高kHfO2栅介质MOSCAP的dEOT=0.75 nm,Vnb=0.37 V,Ig=0.27 A/cm2,满足14或16 nm技术节点对HfO2栅介质的要求.  相似文献   

11.
采用反应磁控溅射方法在Ge衬底上分别制备了HfTiO和HfO2高κ栅介质薄膜,并研究了湿N2和干N2退火对介质性能的影响。由于GeOx在水气氛中的水解特性,湿N2退火能分解淀积过程中生长的锗氧化物,降低界面态和氧化物电荷密度,有效提高栅介质质量。测量结果表明,湿N2退火Al/HfTiO/n-GeMOS和Al/HfO2/n-GeMOS电容的栅介质等效厚度分别为3.2nm和3.7nm,-1V栅偏压下的栅极漏电流分别为1.08×10-5A/cm2和7.79×10-6A/cm2。实验结果还表明,HfTiO样品由于Ti元素的引入提高了介电性能,但是Ti的扩散也使得界面态密度升高。  相似文献   

12.
超薄HfO2高K栅介质薄膜的软击穿特性   总被引:1,自引:0,他引:1  
研究了高K(高介电常数)栅介质HfO2薄膜的制备工艺,制备了有效氧化层厚度为2.9nm的超薄MOS电容。当栅氧化层很薄时会发生软击穿现象,软击穿和通常的硬击穿是不同的现象。分别利用在栅介质上加恒流应力和恒压应力两种方法研究了HfO2薄膜的击穿特性,实验结果表明,在两种应力方式下HfO2栅介质均发生了软击穿现象,软击穿和硬击穿的机理不同。  相似文献   

13.
分两步提取了HfO2高k栅介质等效氧化层厚度(EOT).首先,根据MIS测试结构等效电路,采用双频C-V特性测试技术对漏电流和衬底电阻的影响进行修正,得出HfO2高k栅介质的准确C-V特性.其次,给出了一种利用平带电容提取高k介质EOT的方法,该方法能克服量子效应所产生的反型层或积累层电容的影响.采用该两步法提取的HfO2高k栅介质EOT与包含量子修正的Poisson方程数值模拟结果对比,误差小于5%,验证了该方法的正确性.  相似文献   

14.
堆叠栅介质MOS器件栅极漏电流的计算模型   总被引:1,自引:0,他引:1  
杨红官  朱家俊  喻彪  戴大康  曾云 《微电子学》2007,37(5):636-639,643
采用顺序隧穿理论和传输哈密顿方法并考虑沟道表面量子化效应,建立了高介电常数堆叠栅介质MOS器件栅极漏电流的顺序隧穿模型。利用该模型数值,研究了Si3N4/SiO2、Al2O3/SiO2、HfO2/SiO2和La2O3/SiO2四种堆叠栅介质结构MOS器件的栅极漏电流随栅极电压和等效氧化层厚度变化的关系。依据计算结果,讨论了堆叠栅介质MOS器件按比例缩小的前景。  相似文献   

15.
低剂量率下MOS器件的辐照效应   总被引:5,自引:1,他引:4  
对MOS器件在低剂量率γ射线辐射条件下的偏置效应进行了研究。对不同偏置及退火条件下MOS器件辐照后的阈值电压漂移进行了对比。结果表明,偏置在MOS器件栅氧化层内产生电场,增强了辐照产生电子-空穴对的分离,同时,影响了正电荷(包括空穴和氢离子)的运动状态;此外,偏置对退火同样有促进作用。  相似文献   

16.
林钢  徐秋霞 《半导体学报》2005,26(1):115-119
成功制备了EOT(equivalent oxide thickness)为2.1nm的Si3N4/SiO2(N/O) stack栅介质,并对其性质进行了研究.结果表明,同样EOT的Si3N4/SiO2 stack栅介质和纯SiO2栅介质比较,前者在栅隧穿漏电流、抗SILC性能、栅介质寿命等方面都远优于后者.在此基础上,采用Si3N4/SiO2 stack栅介质制备出性能优良的栅长为0.12μm的CMOS器件,器件很好地抑制了短沟道效应.在Vds=Vgs=±1.5V下,nMOSFET和pMOSFET对应的饱和电流Ion分别为584.3μA/μm和-281.3μA/μm,对应Ioff分别是8.3nA/μm和-1.3nA/μm.  相似文献   

17.
利用磁控溅射的方法在p- Si上制备了高k(高介电常数)栅介质Hf O2薄膜的MOS电容,对薄栅氧化层电容的软击穿和硬击穿特性进行了实验研究.利用在栅极加恒电流应力的方法研究了不同面积Hf O2 薄栅介质的击穿特性以及击穿对栅介质的I- V特性和C- V特性的影响.实验结果表明薄栅介质的击穿过程中有很明显的软击穿现象发生,与栅氧化层面积有很大的关系,面积大的电容比较容易发生击穿.分析比较了软击穿和硬击穿的区别,并利用统计分析模型对薄栅介质的击穿机理进行了解释  相似文献   

18.
对纳米MOSFET关断态的栅电流、漏电流和衬底电流进行了模拟,指出边缘直接隧穿电流(IEDT)远远大于传统的栅诱导泄漏电流(IGIDL)、亚阈区泄漏电流(ISUB)及带间隧穿电流(IBTBT)。对50 nm和90 nm MOSFET器件的Id-Vg特性进行了比较,发现在高Vdd下,关态泄漏电流(Ioff)随IEDT的增加而不断增大,并且器件尺寸越小,Ioff越大。高k栅介质能够减小IEDT,进而减小了Ioff,其中HfSiON、HfLaO可以使边缘隧穿电流减小2~5个数量级且边缘诱导的势垒降低(FIBL)效应很小。但当栅介质的k>25以后,由于FIBL效应,关态泄漏电流反而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号