首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
针对车辆行驶环境中难以检测的交通标志,提出了一种检测和识别方法.首先分割交通标志的特征颜色区域,并扩展感兴趣区域,提取区域边缘.然后用直线分割和杂点去除粗略划分边缘,根据直线间顶点处的曲率关系,计算转向角并分类顶点的类型,用无参数形状检测子来检测图像中的圆形、三角形和矩形等.将检测到的候选区域送入形状分类器中,分类形状并排除杂质的干扰,最后通过二元树复小波变换和二维独立分量分析相结合来识别交通标志类型.实验结果表明提出的方法对交通标志被遮挡、光照不均匀、颜色部分失真的情况下,检测率和识别率均较高,并且可以达到实时处理的效果.  相似文献   

2.
基于小波变换和独立分量分析的面部表情识别   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种联合二维离散小波变换(2D-DWT)和独立分量分析(ICA)相结合的表情特征提取法。首先通过2D-DWT将当前图像分解成4个子图像,其中一子图像对应原图像的主体部分(低通部分),其余三个子图像对应图像的细节部分(高通部分)。采用ICA分别对每一子图像进行特征提取,得到的表情矢量与中性矢量的差值矢量作为特征矢量,在此基础上使用性能比较稳定的支持向量机来分析各个子带图像的识别情况。此外,还提出了一种简单有效的方法对各个子图像所提取的特征进行融合,将融合的结果作为特征矢量来识别。同其它基于静态图像识别的方法相比,所提的方法识别效果好,且具有一定泛化性和鲁棒性。  相似文献   

3.
董钦科  王相海 《计算机科学》2009,36(10):280-283
近年来,二维主分量分析(2D-PCA)和离散小波变换作为图像分析的两种有效方法,受到人们的广泛关注。结合以上两种方法,提出了一种多频带2D-PCA虹膜识别快速算法。该算法首先对虹膜图像做预处理,然后将预处理后的图像做2维离散小波变换,取小波系数的两个中频子带作为2D-PCA的输入空间;在训练阶段,求得训练样本输入空间的特征空间并由此得到训练样本的特征向量,形成样本特征库;在识别阶段,计算得到未知样本特征向量;同时为了提高特征向量对图像旋转的鲁棒性,在该阶段进行了基于不同起始角度的归一化处理。最后采用Hamming距离,对未知样本的特征向量在特征库中进行多模板匹配,通过K临法则和阈值法得到识别结果。实验结果验证了所提算法的有效性。  相似文献   

4.
为了提高交通标志的识别速度,提出了一种样本类中间值结合均值的的2DPCA.该方法采用每类训练样本中间值的均值代替训练样本的平均值,以此重建散布矩阵从而得到最优投影矩阵.在已经建立的两个交通标志图像集上用该方法进行了实验,结果表明新方法识别速度得到了大幅提升并且取得了较高的识别率.  相似文献   

5.
提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA与Fisher线性判别FLD(Fisher Linear Discriminate)结合起来,利用了以前仅用于降维的PCA特征和FLD特征相融合进行掌纹识别。基于PolyU掌纹库的实验结果表明,该方法不仅有更高的识别率,而且维数更低。  相似文献   

6.
综合考虑识别率、时间复杂度以及鲁棒性,提出一种边缘、纹理、颜色多特征融合和支持向量机(SVM)的交通标志识别算法。通过提取能够描述交通标志图像边缘信息的方向梯度直方图(HOG)特征并进行统计平均,与能够表示标志图像内部纹理信息的局部二值模式(LBP)特征融合得到降维后的HOG-maxLBP特征,再级联交通标志的颜色特征作为最终的特征向量,最后利用SVM进行交通标志训练和分类。实验结果表明,该算法不仅提高了交通标志的识别率,而且降低了时间复杂度,增强了系统鲁棒性。  相似文献   

7.
朱华  李永忠 《现代计算机》2007,(11):32-33,40
提出一种基于独立分量分析的图像水印算法.该算法把一幅二值水印图像嵌入到原图像的小波逼近子图中,检测时利用快速独立分量分析方法来提取水印.实验结果表明,该算法加入的水印可以被恢复,并且具有一定的鲁棒性.  相似文献   

8.
独立分量分析方法在图像处理中具有独特的优势,用于掌纹特征提取,使得变换后的各分量之间不仅互不相关,而且还尽可能的统计独立,能更全面的揭示掌纹特征间的本质结构。为了降低运算复杂度,提出了一种基于小波分解的独立分量掌纹特征提取方法。首先对掌纹图像做小波变换进行降维,在保留原始图像轮廓信息和细节信息的基础上,去掉高频噪声,然后进行独立分量分析,采用FastICA算法,试验结果表明,本方法比传统的独立分量分析方法的识别率更高,且计算量大大减少。  相似文献   

9.
针对交通标志图像易受复杂背景、光照、运动模糊等影响导致识别率低和识别速度慢的问题,提出了基于非对称双通道卷积神经网络的交通标志识别方法.通过不同网络结构的两通路提取丰富的特征信息,上层通路使用跃层连接提取的浅层局部特征和深层全局特征,与下层通路提取的精细特征在全连接层进行融合,并使用激活函数LReLUs代替脆弱的ReL...  相似文献   

10.
由于光照、尺寸形变等因素,在自然条件下实时准确地检测和识别多尺度交通标志一直具有挑战性.针对该问题,论文提出一个面向多尺度交通标志的快速识别算法.首先,论文采用了一种基于多通道融合的输入方式,解决原始图像直接输入导致局部边缘刻画不明显的问题;同时,论文研究了一种注意力机制与多尺度特征相结合的交通标志检测算法.通过FPN...  相似文献   

11.
对神经网络理论和神经网络分类器进行了研究,提出了基于BP神经网络分类器的交通标志识别模型。通过大量实验和比较,得到了识别效率高的模型,并将这一模型应用到所研究的交通标志识别系统,从而对系统作了初步的实现。  相似文献   

12.
在分块核函数的基础上提出了基于多个图像特征进行组合决策的识别方法。该算法先对交通标识图像提取两个不同的特征,即HOG特征和基于子模式组合的分块核函数特征,然后针对不同特征构造相应的分类器,最后对这几个分类器的输出采用投票机制进行决策融合。在德国交通标识数据库上的实验结果表明,该方法相比单特征识别具有更高的识别准确率。  相似文献   

13.
一种基于2D-DWT和2D-PCA的人脸识别方法   总被引:10,自引:1,他引:10  
提出了一种联合图像二维离散小波变换(2D-DWT)和二维主成分分析(2D-PCA)的人脸识别方法。首先通过2D-DWT将当前图像分解成四个子图像,其中一子图像对应原图像的主体部分(低通部分),其余三个子图像则对应图像的细节部分(高通部分)。在此基础上,采用2D-PCA方法分别对每一子图像进行特征提取。此外,文中还提出了一种简单有效的方法对各子图像中所提取的特征进行融合,根据所得到的特征进行人脸识别。同其他基于小波分解的人脸识别方法相比,所提出的方法能更充分地利用人脸图像的有用判别信息,并得到更好的识别结果。  相似文献   

14.
2维双树复小波不确定度加权融合的人脸识别   总被引:1,自引:0,他引:1       下载免费PDF全文
在人脸识别中,传统小波、Gabor小波不能很好地表征人脸特征。提出2维双树复小波多频带不确定度加权融合的人脸识别算法,使用了人脸2维双树复小波多频带特征,计算多频带不确定度及其权值并结合多频带特征进行加权融合,能很好得到人脸的特征。该加权融合算法首先计算人脸2维双树复小波多个频带特征图,然后计算多个频带滤波不确定度权值,最后进行加权融合。同时使用了2维主成分分析(2DPCA)方法对特征向量进行子空间投影,应用欧氏距离作为相似测度实现分类识别。使用英国剑桥Olivetti实验室(ORL)图像库进行了测试,实验结果表明,提出的方法相对于使用2DPCA、Wavelet和Gabor小波的特征提取方法,取得了更好的识别效果。  相似文献   

15.
提出了一种用小波包变换(WPT)和二维四元数主成分分析(2DQPCA)的灰度人脸图像识别算法。将对人脸灰度图像经小波包变换得到的分解系数构成四元数矩阵,通过2DQPCA实现数据降维并构造四元数特征空间,将其划分为若干子块,对每个子块根据最近邻算法进行分类并对分类结果投票,根据投票结果实现最终的人脸识别。该方法与PCA等传统方法在Orl、Yale等四个人脸数据库上的实验结果比较表明,该方法在识别率上有明显优势,且对光照、表情变化具有鲁棒性。  相似文献   

16.
应用复小波和独立成分分析的人脸识别   总被引:1,自引:1,他引:1  
柴智  刘正光 《计算机应用》2010,30(7):1863-1866
结合双树复小波变换(DT-CWT)和独立成分分析(ICA)提出了一种人脸识别新方法。该方法首先应用双树复小波变换提取图像的特征向量,接着通过主成分分析(PCA)降低特征向量的维数,在此基础上应用独立成分分析提取统计上独立的特征向量,然后基于相关系数的分类器对特征向量进行分类。双树复小波变换具有方向与尺度选择性,并能有效的保持图像的频域信息,其与独立成分分析相结合提取的特征具有良好的分类性能。在ORL和AR人脸图像数据库上进行算法验证的结果表明该方法的有效性。  相似文献   

17.
结合二维离散小波变换(2DDWT)和二维非负矩阵分解(2DNMF)两者的优点,提出了一种新的人脸识别融合算法2DDWT+2DNMF。首先利用小波变换把人脸图像分解成四个子块频带区域,并对三个高频子块进行图像融合,然后对低频子块和融合图像进行二维非负矩阵分解以提取特征,进而对特征数据进行加权处理。ORL和YALE人脸数据库中的识别实验表明,与PCA、SVD、NMF以及2DDWT+NMF算法相比,新融合算法能有效缩短训练时间和提高识别率。  相似文献   

18.
针对光照变化和部分遮挡这两种情形,提出一种基于多帧视频图像的高稳定特征的交通标志识别方法。利用有交通标志的多帧视频图像的SURF特征建立bag of SURFs特征向量集,与标准交通标志图像的模板特征向量集匹配,采用权值计分策略的最高得分确定交通标志的识别结果。对三种情形下的公开视频图像集进行了实验并与最新方法进行对比分析,结果表明新方法的交通标志识别效果具有明显的优越性,是在光照变化和部分遮挡情形下一种有效的交通标志识别方法。  相似文献   

19.
提出了一种对含字符的交通警告标志进行检测和识别的方法。根据交通标志颜色的分布范围,以颜色分量为基础进行阈值分割,将图像中大部分不满足颜色要求的区域去掉,借助连通域标记、形状因子来进行交通标志的定位。将定位后的交通标志,通过预处理、字符的旋转矫正和分割,得到人眼可以识别的字符。通过欧氏距离匹配法进行字符的计算机识别,最终可使计算机识别率达到75%左右。  相似文献   

20.
针对目前交通标志识别任务在使用深度学习算法时存在模型参数量大、实时性较差和准确率较低的问题,提出了基于YOLO v3改进的交通标志识别算法。该算法首先将深度可分离卷积引入YOLO v3算法的特征提取层,将卷积过程分解为深度卷积、逐点卷积两部分,实现通道内卷积与通道间卷积之间的分离,从而保证了在较高识别准确率的基础上极大地减少了算法模型参数数量以及计算量。其次,在损失函数设计上使用广义交并比(GIoU)损失替换均方误差(MSE)损失,将评测标准量化为损失,解决了MSE损失存在的优化不一致和尺度敏感的问题,同时将Focal损失加入到损失函数以解决正负样本严重不均衡的问题,通过降低大量简单背景类的权重使得算法更专注于检测前景类。将该算法应用于交通标志任务中的结果表明,在TT100K数据集上,该算法的平均精度均值(mAP)指标达到了89%,相较于YOLO v3算法提升了6.6个百分点,且其参数量仅为原始YOLO v3算法的1/5左右,每秒帧数(FPS)亦比YOLO v3算法提升了60%。该算法在极大地减少模型参数量和计算量的同时,提高了检测速度和检测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号