共查询到20条相似文献,搜索用时 78 毫秒
1.
针对车辆行驶环境中难以检测的交通标志,提出了一种检测和识别方法.首先分割交通标志的特征颜色区域,并扩展感兴趣区域,提取区域边缘.然后用直线分割和杂点去除粗略划分边缘,根据直线间顶点处的曲率关系,计算转向角并分类顶点的类型,用无参数形状检测子来检测图像中的圆形、三角形和矩形等.将检测到的候选区域送入形状分类器中,分类形状并排除杂质的干扰,最后通过二元树复小波变换和二维独立分量分析相结合来识别交通标志类型.实验结果表明提出的方法对交通标志被遮挡、光照不均匀、颜色部分失真的情况下,检测率和识别率均较高,并且可以达到实时处理的效果. 相似文献
2.
提出了一种联合二维离散小波变换(2D-DWT)和独立分量分析(ICA)相结合的表情特征提取法。首先通过2D-DWT将当前图像分解成4个子图像,其中一子图像对应原图像的主体部分(低通部分),其余三个子图像对应图像的细节部分(高通部分)。采用ICA分别对每一子图像进行特征提取,得到的表情矢量与中性矢量的差值矢量作为特征矢量,在此基础上使用性能比较稳定的支持向量机来分析各个子带图像的识别情况。此外,还提出了一种简单有效的方法对各个子图像所提取的特征进行融合,将融合的结果作为特征矢量来识别。同其它基于静态图像识别的方法相比,所提的方法识别效果好,且具有一定泛化性和鲁棒性。 相似文献
3.
近年来,二维主分量分析(2D-PCA)和离散小波变换作为图像分析的两种有效方法,受到人们的广泛关注。结合以上两种方法,提出了一种多频带2D-PCA虹膜识别快速算法。该算法首先对虹膜图像做预处理,然后将预处理后的图像做2维离散小波变换,取小波系数的两个中频子带作为2D-PCA的输入空间;在训练阶段,求得训练样本输入空间的特征空间并由此得到训练样本的特征向量,形成样本特征库;在识别阶段,计算得到未知样本特征向量;同时为了提高特征向量对图像旋转的鲁棒性,在该阶段进行了基于不同起始角度的归一化处理。最后采用Hamming距离,对未知样本的特征向量在特征库中进行多模板匹配,通过K临法则和阈值法得到识别结果。实验结果验证了所提算法的有效性。 相似文献
4.
5.
提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA与Fisher线性判别FLD(Fisher Linear Discriminate)结合起来,利用了以前仅用于降维的PCA特征和FLD特征相融合进行掌纹识别。基于PolyU掌纹库的实验结果表明,该方法不仅有更高的识别率,而且维数更低。 相似文献
6.
综合考虑识别率、时间复杂度以及鲁棒性,提出一种边缘、纹理、颜色多特征融合和支持向量机(SVM)的交通标志识别算法。通过提取能够描述交通标志图像边缘信息的方向梯度直方图(HOG)特征并进行统计平均,与能够表示标志图像内部纹理信息的局部二值模式(LBP)特征融合得到降维后的HOG-maxLBP特征,再级联交通标志的颜色特征作为最终的特征向量,最后利用SVM进行交通标志训练和分类。实验结果表明,该算法不仅提高了交通标志的识别率,而且降低了时间复杂度,增强了系统鲁棒性。 相似文献
7.
提出一种基于独立分量分析的图像水印算法.该算法把一幅二值水印图像嵌入到原图像的小波逼近子图中,检测时利用快速独立分量分析方法来提取水印.实验结果表明,该算法加入的水印可以被恢复,并且具有一定的鲁棒性. 相似文献
8.
独立分量分析方法在图像处理中具有独特的优势,用于掌纹特征提取,使得变换后的各分量之间不仅互不相关,而且还尽可能的统计独立,能更全面的揭示掌纹特征间的本质结构。为了降低运算复杂度,提出了一种基于小波分解的独立分量掌纹特征提取方法。首先对掌纹图像做小波变换进行降维,在保留原始图像轮廓信息和细节信息的基础上,去掉高频噪声,然后进行独立分量分析,采用FastICA算法,试验结果表明,本方法比传统的独立分量分析方法的识别率更高,且计算量大大减少。 相似文献
9.
10.
由于光照、尺寸形变等因素,在自然条件下实时准确地检测和识别多尺度交通标志一直具有挑战性.针对该问题,论文提出一个面向多尺度交通标志的快速识别算法.首先,论文采用了一种基于多通道融合的输入方式,解决原始图像直接输入导致局部边缘刻画不明显的问题;同时,论文研究了一种注意力机制与多尺度特征相结合的交通标志检测算法.通过FPN... 相似文献
11.
对神经网络理论和神经网络分类器进行了研究,提出了基于BP神经网络分类器的交通标志识别模型。通过大量实验和比较,得到了识别效率高的模型,并将这一模型应用到所研究的交通标志识别系统,从而对系统作了初步的实现。 相似文献
12.
在分块核函数的基础上提出了基于多个图像特征进行组合决策的识别方法。该算法先对交通标识图像提取两个不同的特征,即HOG特征和基于子模式组合的分块核函数特征,然后针对不同特征构造相应的分类器,最后对这几个分类器的输出采用投票机制进行决策融合。在德国交通标识数据库上的实验结果表明,该方法相比单特征识别具有更高的识别准确率。 相似文献
13.
一种基于2D-DWT和2D-PCA的人脸识别方法 总被引:10,自引:1,他引:10
提出了一种联合图像二维离散小波变换(2D-DWT)和二维主成分分析(2D-PCA)的人脸识别方法。首先通过2D-DWT将当前图像分解成四个子图像,其中一子图像对应原图像的主体部分(低通部分),其余三个子图像则对应图像的细节部分(高通部分)。在此基础上,采用2D-PCA方法分别对每一子图像进行特征提取。此外,文中还提出了一种简单有效的方法对各子图像中所提取的特征进行融合,根据所得到的特征进行人脸识别。同其他基于小波分解的人脸识别方法相比,所提出的方法能更充分地利用人脸图像的有用判别信息,并得到更好的识别结果。 相似文献
14.
在人脸识别中,传统小波、Gabor小波不能很好地表征人脸特征。提出2维双树复小波多频带不确定度加权融合的人脸识别算法,使用了人脸2维双树复小波多频带特征,计算多频带不确定度及其权值并结合多频带特征进行加权融合,能很好得到人脸的特征。该加权融合算法首先计算人脸2维双树复小波多个频带特征图,然后计算多个频带滤波不确定度权值,最后进行加权融合。同时使用了2维主成分分析(2DPCA)方法对特征向量进行子空间投影,应用欧氏距离作为相似测度实现分类识别。使用英国剑桥Olivetti实验室(ORL)图像库进行了测试,实验结果表明,提出的方法相对于使用2DPCA、Wavelet和Gabor小波的特征提取方法,取得了更好的识别效果。 相似文献
15.
提出了一种用小波包变换(WPT)和二维四元数主成分分析(2DQPCA)的灰度人脸图像识别算法。将对人脸灰度图像经小波包变换得到的分解系数构成四元数矩阵,通过2DQPCA实现数据降维并构造四元数特征空间,将其划分为若干子块,对每个子块根据最近邻算法进行分类并对分类结果投票,根据投票结果实现最终的人脸识别。该方法与PCA等传统方法在Orl、Yale等四个人脸数据库上的实验结果比较表明,该方法在识别率上有明显优势,且对光照、表情变化具有鲁棒性。 相似文献
16.
应用复小波和独立成分分析的人脸识别 总被引:1,自引:1,他引:1
结合双树复小波变换(DT-CWT)和独立成分分析(ICA)提出了一种人脸识别新方法。该方法首先应用双树复小波变换提取图像的特征向量,接着通过主成分分析(PCA)降低特征向量的维数,在此基础上应用独立成分分析提取统计上独立的特征向量,然后基于相关系数的分类器对特征向量进行分类。双树复小波变换具有方向与尺度选择性,并能有效的保持图像的频域信息,其与独立成分分析相结合提取的特征具有良好的分类性能。在ORL和AR人脸图像数据库上进行算法验证的结果表明该方法的有效性。 相似文献
17.
18.
19.
20.
针对目前交通标志识别任务在使用深度学习算法时存在模型参数量大、实时性较差和准确率较低的问题,提出了基于YOLO v3改进的交通标志识别算法。该算法首先将深度可分离卷积引入YOLO v3算法的特征提取层,将卷积过程分解为深度卷积、逐点卷积两部分,实现通道内卷积与通道间卷积之间的分离,从而保证了在较高识别准确率的基础上极大地减少了算法模型参数数量以及计算量。其次,在损失函数设计上使用广义交并比(GIoU)损失替换均方误差(MSE)损失,将评测标准量化为损失,解决了MSE损失存在的优化不一致和尺度敏感的问题,同时将Focal损失加入到损失函数以解决正负样本严重不均衡的问题,通过降低大量简单背景类的权重使得算法更专注于检测前景类。将该算法应用于交通标志任务中的结果表明,在TT100K数据集上,该算法的平均精度均值(mAP)指标达到了89%,相较于YOLO v3算法提升了6.6个百分点,且其参数量仅为原始YOLO v3算法的1/5左右,每秒帧数(FPS)亦比YOLO v3算法提升了60%。该算法在极大地减少模型参数量和计算量的同时,提高了检测速度和检测精度。 相似文献