首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Minimum flows in rivers and streams aim to provide a certain level of protection for the aquatic environment. The level of protection is described by a measure such as a prescribed proportion of historic flows, wetted perimeter or suitable habitat. Conflicting minimum flow assessments from different instream flow methods are arguably the result of different environmental goals and levels of protection. The goals, the way in which levels of protection are specified, and the relationship between levels of protection and the aquatic environment are examined for three major categories of flow assessment methods: historic flow, hydraulic geometry and habitat. Basic conceptual differences are identified. Flow assessments by historic flow and hydraulic methods are related to river size and tend to retain the ‘character’ of a river. Habitat-based methods make no a priori assumptions about the natural state of the river and flow assessments are based primarily on water depth and velocity requirements. Flow and hydraulic methods assume that lower than natural flows will degrade the stream ecosystem, whereas habitat methods accept the possibility that aspects of the natural ecosystem can be enhanced by other than naturally occurring flows. Application of hydraulic and habitat methods suggests that the environmental response to flow is not linear; the relative change in width and habitat with flow is greater for small rivers than for large. Small rivers are more ‘at risk’ than large rivers and require a higher proportion of the average flow to maintain similar levels of environmental protection. Habitat methods are focused on target species or specific instream uses, and are useful where there are clear management objectives and an understanding of ecosystem requirements. Flow and hydraulic methods are useful in cases where there is a poor understanding of the ecosystem or where a high level of protection for an existing ecosystem is required. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
This study analyses bank morphological parameters of inshore areas as significant qualifying criteria for the habitat of riverine fish in large rivers. The mesoscaled (1.04±0.35 km) spatial distribution of adult fish was studied along a 50 km stretch of a free‐flowing section of the Austrian Danube. Fish abundance at the inshore zone of the main channel was assessed every month from March 1992 to May 1993, applying stratified random sampling by electrofishing. In order to calculate river morphological variables, a specific DOS application was programmed taking riverbank profiles, slope of the Danube and mean daily water level into account. The sampling sites by environmental variables were analysed by principal component analysis (PCA). PCA scores, together with the relative densities of each fish species in terms of their proportions per catch, were treated by a simple logistic regression. The different species exhibit specific patterns of statistical probability in terms of distribution and densities at distinct structural inshore types with regard to area, slope, habitat heterogeneity and connectivity parameters. Large gradually sloping inshore areas are characterized by rheophilic Chondrostoma nasus, Leuciscus idus and Abramis ballerus, whereas eurytopic species do not show a consistent pattern. Heterogeneous stretches contain high proportions of Leuciscus cephalus, Abramis brama and Abramis ballerus. Connectivity discriminates strictly riverine species like Chondrostoma nasus from rheophilic species which require non‐channel habitat during their life history. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Large river systems create challenges when sampling zooplankton. The dynamics of large rivers, spatial heterogeneity of biota, and behaviours of zooplankton can all contribute to large variation in estimation. The gear utilized for zooplankton collections may also be a factor, and there is not a well‐studied gear, nor industry standard, for collection in riverine systems. The lack of consistent sampling methods makes it difficult to compare zooplankton within and across systems. A standard method for zooplankton collection would be valuable for comparison among studies. To optimize zooplankton assessment in large river habitats, we tested how community estimations varied between four common zooplankton sampling devices across three river habitat types. We tested four gears: the Schindler–Patalas trap, integrated tube sampler, powered water pump, and horizontal tow net. Each device was used to collect samples in thalweg, channel border, and backwater river habitats within Pool 8 of the Upper Mississippi River in June, July, and August of 2017. Our results support that there are qualitative and quantitative differences in zooplankton estimates among gear in different habitats. The powered pump most often yielded highest abundances of total and individual zooplankton taxa allowing for more reliable community comparisons. With some modification, the pump is recommended as the most appropriate sampling gear when performing quantitative studies of zooplankton composition and abundance in large river habitats.  相似文献   

4.
北方地区由于缺水干旱、城市化进程发展和人为活动等影响导致河流生境退化严重,现有评价体系和方法不能很好地反映河流生境状况,基于此,构建了包括河流形态结构、水质水量、河岸带状况、景观环境、水生生物5个方面共13项指标的北方河流生境质量评价指标体系,确定了各指标的等级划分及生境质量综合指数计算方法。结合北京市延庆区妫水河生境调查结果,对流域内选取的妫水河干流及3条支流按照河流河段尺度分为缓坡型、山区型和城区型河段,并利用构建的评价体系和方法开展具体评价。结果表明:(1)研究区域13个样点的河流生境质量状况差异显著,约46.2%的样点河流生境质量处于好等级,约15.4%的样点为较好等级,约7.7%的样点为一般等级,约23.1%样点为较差等级,约7.7%的样点为最差等级。(2)缓坡型河段的生境质量明显优于山区型河段和城区型河段,其生境等级为"好",山区型和城区型河段的生境等级均为"较差",表明河流水量和人类负面干扰对河流生境影响较大。(3)该评价指标体系适合北方缺水干旱的特殊生境状况,其评价结果较为直观的反映了河流生境现状,兼备科学性和可操作性。  相似文献   

5.
Modern, holistic concepts dealing with river/floodplain ecology recognize the key role of hydromorphological turnover processes for the development of distinct habitat patterns. Such patterns, in turn, are a vital basis for the extraordinary biodiversity of riverine systems. Natural braided/anabranched river systems in particular are characterised by high turnover rates; in the mid‐term, however, they are thought to stay in dynamic equilibrium (shifting‐mosaic steady‐state) as long as the physical framework conditions remain unchanged. This study analyses both the historical composition and the spatio‐temporal development of riverine habitats associated with an anabranched section of the Austrian Danube River. A habitat age model was used to analyse the age structure of the different habitat types. The results for the period 1812–1821 prior to channelization indicate that terrestrialization and habitat ageing were almost balanced with habitat regeneration and rejuvenation. Even though intensive morphological changes occurred, the Danube here largely persisted in dynamic equilibrium. The first channelization measures between 1821 and 1838, when 21% of the main channel banks were embanked, slightly promoted habitat regeneration. From 1859 onwards (80% embanked) until 1925, the natural habitat life time cycle was disrupted and the regenerating processes almost ceased. Altogether, human interferences led to a river landscape in a morphologically static state governed by significant terrestrialization (habitat succession) and habitat ageing. Without natural disturbances or, alternatively, targeted habitat management strategies, such an ecosystem soon lacks morphologically young habitats and adequate site conditions for a river/floodplain type‐specific biocoenosis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Reliable estimates of abundance are needed to assess consequences of proposed habitat restoration and enhancement projects on freshwater mussels in the Upper Mississippi River (UMR). Although there is general guidance on sampling techniques for population assessment of freshwater mussels, the actual performance of sampling designs can depend critically on the population density and spatial distribution at the project site. To evaluate various sampling designs, we simulated sampling of populations, which varied in density and degree of spatial clustering. Because of logistics and costs of large river sampling and spatial clustering of freshwater mussels, we focused on adaptive and non‐adaptive versions of single and two‐stage sampling. The candidate designs performed similarly in terms of precision (CV) and probability of species detection for fixed sample size. Both CV and species detection were determined largely by density, spatial distribution and sample size. However, designs did differ in the rate that occupied quadrats were encountered. Occupied units had a higher probability of selection using adaptive designs than conventional designs. We used two measures of cost: sample size (i.e. number of quadrats) and distance travelled between the quadrats. Adaptive and two‐stage designs tended to reduce distance between sampling units, and thus performed better when distance travelled was considered. Based on the comparisons, we provide general recommendations on the sampling designs for the freshwater mussels in the UMR, and presumably other large rivers. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

7.
The habitat templet approach was used in a scale‐sensitive bioindicator assessment for the ecological integrity of riverbanks and for specific responses to river management. Ground beetle habitat templets were derived from a catchment‐scale sampling, integrating the overall variety of bank types. This coarse‐filter analysis was integrated in the reach‐scale fine‐filtering approaches of community responses to habitat integrity and river management impacts. Higher species diversity was associated with the higher heterogeneity in bank habitats of the un‐navigable river reaches. The abundant presence of habitat specialists in the riverbank zone allows a habitat integrity assessment based on the habitat templet indicator species. Significant responses were detected for channel morphology in the width‐to‐depth ratio and for hydrological regime in peak frequency and peak velocity, enabling the development of evaluation methods for the impact assessment of river management and flood protection strategies. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The natural flow regime of many rivers in the USA has been impacted by anthropogenic structures. This loss of connectivity plays a role in shaping river ecosystems by altering physical habitat characteristics and shaping fish assemblages. Although the impacts of large dams on river systems are well documented, studies on the effects of low‐head dams using a functional guild approach have been fewer. We assessed river habitat quality and fish community structure at 12 sites on two rivers; the study sites included two sites below each dam, two sites in the pool above each dam and two sites upstream of the pool extent. Fish communities were sampled from 2012 to 2015 using a multi‐gear approach in spring and fall seasons. We aggregated fishes into habitat and reproductive guilds in order to ascertain dams' effects on groups of fishes that respond similarly to environmental variation. We found that habitat quality was significantly poorer in the artificial pools created above the dams than all other sampling sites. Fast riffle specialist taxa were most abundant in high‐quality riffle habitats farthest from the dams, while fast generalists and pelagophils were largely restricted to areas below the downstream‐most impoundment. Overall, these dams play a substantial role in shaping habitat, which impacts fish community composition on a functional level. Utilizing this functional approach enables us to mechanistically link the effects of impoundments to the structure of fish communities and form generalizations that can be applied to other systems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Bigheaded carp (Hypophthalmichthys spp.) occur throughout much of the Mississippi Basin, USA. Efforts to control the spread of these invasive species require information on their spatial ecology, though sampling is hindered by their broad extent, habitat tolerances, and species‐specific behaviour. Mobile hydroacoustics was used to quantify habitat and depth use of bigheaded carp over four years in the heavily invaded Lower Illinois River, a major Mississippi tributary and potential dispersal pathway to the Great Lakes. Horizontally oriented transducers (combined with capture gear for species designation) enabled sampling of the main habitat features in this large flood plain river. Silver carp (Hypophthalmichthys molitrix) were dominant over bighead carp (Hypophthalmichthys nobilis) at all but one site, although habitat use was similar for both species. Densities were highest in lotic backwaters, followed by lentic backwaters and nearshore main channel, with lowest densities in the mid main channel. Bigheaded carp size and species composition were independent of habitat type. Depth associations were similar for both species, with average occurrence at 2.5–3.5 m in the main channel and 1–2 m in backwaters. However, depth relative to the river bed was largely similar across habitat types. Bigheaded carp density and depth use in the main channel were linked non‐linearly to river discharge and water temperature, respectively; densities were reduced during high discharge, whereas depth use became shallower at higher temperatures. Density–hydrology trends were less apparent in backwaters. These findings highlight critical aspects of bigheaded carp spatial ecology that will facilitate effective management in invaded and at‐risk ecosystems.  相似文献   

10.
New Zealand's Waikato River has had a short but intense history of development, primarily through land‐use change and flow regulation in the upper river, and in the lower river through flood control works, non‐native species invasion, and land‐use intensification. The river undergoes sharp transitions across montane‐flood plain‐coastal environments over a short distance and under similar climate. Together with specialized life‐history requirements of many native fish, these features provide valuable insights into large river ecology and management. Testing approaches to determine outcomes of water quality changes have highlighted the value of functional indicators over traditional biotic measures for monitoring anthropogenic impacts. Initiatives to enhance native fish populations in the lower river have included remediation of migration barriers to improve access to tributary habitat, enhancement of tidal spawning habitat, and traps and gates to limit movement of large pest fish into flood plain lakes for spawning. This example of a southern temperate large river system highlights the importance of recruitment habitat and connectivity for native fish communities dominated by migratory species. Their slender bodies provide opportunities to create semipermeable barriers that enable access to flood plain habitats while restricting larger invasive fish. Recent initiatives have increased momentum to restore the ecological health of this river, but the underpinning science to guide priority actions is often lacking, and there is limited monitoring over the scales and time frames required to evaluate effectiveness.  相似文献   

11.
Fish assemblages in large rivers are governed by spatio‐temporal changes in habitat conditions, which must be accounted for when designing effective monitoring programmes. Using boat electrofishing surveys, this study contrasts species richness, catch per unit effort (CPUE), total biomass, and spatial distribution of fish species in the Saint John River, New Brunswick, Canada, sampled during different diel periods (day and night) and macrohabitats (hydropower regulated river and its reservoir) in the vicinity of the Mactaquac (hydropower) Generating Station. Taxa richness, total CPUE, and total biomass were significantly higher during night surveys, resulting in marked differences in community composition between the two diel periods. Furthermore, the magnitude of diel differences in catch rate was more pronounced in lentic than in lotic macrohabitats. The required sampling effort (i.e., number of sites) to increase accuracy and precision of CPUE estimates varied widely between fish species, diel periods, and macrohabitats and ranged from 15 to 185 electrofishing sites. Determining a correction factor to contrast accuracy and precision of day‐ with night‐time surveys provide useful insights to improve the design of long‐term monitoring programmes for fish communities in large rivers. The study also shows the importance of multihabitat surveys to detect differences in the magnitude of diel changes in fish community metrics.  相似文献   

12.
European river basin authorities are responsible for the implementation of the new river basin management plans in accordance with the European Water Framework Directive. This paper presents a new methodology framework and approach to define and evaluate environmental flow regimes in the realistic complexities that exist with multiple water resource needs at a basin scale. This approach links river basin simulation models and habitat time series analysis to generate ranges of environmental flows (e‐flows), which are evaluated by using habitat, hydropower production and reliability of water supply criteria to produce best possible alternatives. With the use of these tools, the effects of the proposed e‐flows have been assessed to help in the consultation process. The possible effects analysed are impacts on water supply reliability, hydropower production and aquatic habitat. After public agreements, a heuristic optimization process was applied to maximize e‐flows and habitat indicators, while maintaining a legal level of reliability for water resource demands. The final optimal e‐flows were considered for the river basin management plans of the Duero river basin. This paper demonstrates the importance of considering quantitative hydrologic and ecological aspects of e‐flows at the basin scale in addressing complex water resource systems. This approach merges standard methods such as physical habitat simulations and time series analyses for evaluating alternatives, with recent methods to simulate and optimize water management alternatives in river networks. It can be integrated with or used to complement other frameworks for e‐flow assessments such as the In‐stream Flow Incremental Methodology and Ecological Limits of Hydrologic Alteration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
生态水力学法计算生态需水量需要依据河流生境特征、水生生物保护目标对生境的需求等实际情况灵活应用。本文以楠溪江干流河道内生态需水量计算为例,分析自然条件下生境条件与标准推荐方法的差别,探讨针对水生态保护目标的河道内生态需水量综合确定的思路和方法。楠溪江干流水文情势、河势河型较为稳定,是洄游性鱼类香鱼的重要栖息地,生态需水量除可参照水文学、水力学方法确定外,还应分时段、分河段考虑香鱼洄游对水流条件的需求。本文提出的生态需水量以维持良好生境条件为目标,以满足基本生态需求为基础,可为流域水资源开发利用提供参考。  相似文献   

14.
Mapping fluvial hydromorphology is an important part of defining river habitat. Mapping via field sampling or hydraulic modeling is however time consuming, and mapping hydromorphology directly from remote sensing data may offer an efficient solution. Here, we present a system for automated classification of fluvial hydromorphology based on a deep learning classification scheme applied to aerial orthophotos. Using selected rivers in Norway, we show how surface flow patterns (smooth or rippled surfaces vs. standing waves) can be classified in imagery using a trained convolutional neural network (achieving a training and validation accuracy of >95%). We show how integration of these classified surface flow patterns with information on channel gradient, obtained from airborne topographic LiDAR data, can be used to compartmentalize the rivers into hydromorphological units (HMUs) that represent the dominant flow features. Automated classifications were broadly consistent with manual classifications that had been made in previous ground surveys, with equivalency in automated and manually derived HMU classes ranging from 61.5% to 87.7%, depending on the river stretch considered. They were found to be discharge-dependent, showing the temporally dynamic aspect of hydromorphology. The proposed system is quick, flexible, generalizable, and provides consistent classifications free from interpretation bias. The deep learning approach used here can be customized to provide more detailed information on flow features, such as delineating between standing waves and advective diffusion of air bubbles/foam, to provide a more refined classification of surface flow patterns, and the classification approach can be further advanced by inclusion of additional remote sensing methods that provide further information on hydromorphological features.  相似文献   

15.
Bank stabilization is increasing along large rivers as urban areas expand, and the need to protect infrastructure increases in the face of changing climate and flow patterns, but the cumulative effects of different stabilization approaches on reach‐scale biodiversity are not well understood. We investigated physical habitat characteristics and macroinvertebrate community composition and diversity for four shore‐zone habitat types across nested spatial scales over two sampling occasions. Distinct physical conditions were evident for riprap, beach and willow (mixed trees dominated by Salix spp.) habitats, reflecting variations in the combinations of shade, water velocity and substrate size/type, but there was wide variation in habitat conditions for mixed willow‐riprap sites. Additive biodiversity partitioning decomposed reach (γ) diversity into within (α) and among (β1) sample, among habitat (β2), and among site (β3) components, and highlighted significant effects of all spatial scales on macroinvertebrate diversity. Low autumn water levels led to truncated species accumulation curves at beach sites where macrophyte beds that supported macroinvertebrates became stranded, or elevated species accumulation curves for exposed willow‐riprap sites where the river benthos was sampled during hydrological disconnection of bank habitats. Spring and autumn differences in macroinvertebrate community composition were stronger than differences between habitat types. Our findings (a) highlight the interacting effect of river level with shore‐zone habitat function, and (b) underscore the importance of maintaining a diversity of bank habitat types at multiple sites along river shore‐zones to maximize macroinvertebrate diversity.  相似文献   

16.
A negative effect of hydropower on river environment includes rapid changes in flow and habitat conditions. Any sudden flow change could force fish to move towards a refuge area in a short period of time, causing serious disturbances in the life cycle of the fish. A probability-based model was developed to quantify the impact of hydropeaking on habitat suitability for two fish species, brown trout (Salamo trutta) and Grayling (Thymallus thymallus). The model used habitat preference curves, river velocity and depth to develop the suitability maps. The suitability maps reveal that habitat suitability deteriorates as flow increases in the studied part of the river. The probability model showed that, on average, suitability indices are higher for adult grayling than juvenile trout in hydropeaking events in this part of the river. The method developed shows the potential to be used in river management and the evaluation of hydropeaking impacts in river systems affected by hydropower.  相似文献   

17.
Most of the large rivers are heavily degraded and lack near‐natural conditions due to high human pressure (agricultural use and settlements) especially on former inundation areas. Hence, it is rarely possible to ‘restore’ predisturbance conditions of rivers and their floodplains. Further, river or floodplain restoration programs are often based on type‐specific reference conditions. Those reference conditions are mainly determined on the basis of historical maps not giving any information of, for example, sediment supply, flood frequency and vegetation cover (density). Especially for improving the ecological status of rivers with abandoned channel features, key habitats for target fish species have to be restored by reconnecting floodplains and their secondary channel system. In addition, because of the necessity of improving the ecological status, there is growing interest in interdisciplinary river restoration techniques. Within the presented article, an integrative concept is derived based on Light Detection and Ranging measurements and numerical modelling with respect to river dynamics (hydrologic and morphological). Further habitat modelling, based on unsteady depth‐averaged two‐dimensional hydrodynamics, is applied with a focus on the mesounit scale. For testing the conceptual model, various river reaches at the Morava River were selected, featuring different morphological characteristics. It was found that the applied management concept allows considering the important issues of river dynamics (morphological/hydrologic) using a flow‐ and flood‐pulse approach for identifying bottlenecks of target species at the Morava River. The reconnection of abandoned channels will result in an increase of hydromorphological heterogeneity and/or woody debris within the study reach. This might be of high relevance for habitat features (e.g. backwater habitats) especially for flow pulses between low flow and mean flow and/or in reaches without abandoned channels between low‐flow and the bankfull stage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents the results of an investigation into environmental controls on vegetation dynamics on gravel bars. Such environments are a hotspot of threatened plant biodiversity and the dynamics of their vegetation reflect a range of processes that should be indicative of the integrity of the wider floodplain ecosystem. The study was undertaken on a 2 ha mid‐channel gravel bar complex that evolved over two decades, in response to several high magnitude flood events (including two with a return period in excess of 25 years), on a ‘wandering’ reach of the River Tummel, Scotland. Over 180 plant species, including a number of national or regional scarcities, had colonized. The fluvial chronology of the site was documented via sequential sets of aerial photography that revealed a number of discrete surfaces created by individual floods. Environmental heterogeneity, both within and between fluvial units, was investigated by field sampling of vegetation and abiotic variables at 66 locations. The fluvial surfaces were assigned to five habitat classes that ranged in age from two to approximately 20 years, from fine gravel to cobbles, and maintained an elevation range of up to 2.5 metres above low flow river levels. Multivariate analysis highlighted the relative importance of elevation, grain size, moisture content and infiltration and trapping of fines in controlling plant species composition. After standardizing sampling effort the habitat mosaic was found to support on average 1.36 times more species than an equivalent sample of any one habitat. In terms of biodiversity and river management, our results emphasize the importance of sustaining fluvial processes that preserve the habitat mosaic in order to conserve the characteristic biota of gravel bar complexes and river channel islands. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
The ecological responses of large rivers to human pressure can be assessed at multiple scales using a variety of indicators, but little is known about how the responses of ecological indicators vary over small spatial scales. We sampled phytoplankton, zooplankton and macroinvertebrates and measured river metabolism and cotton strip breakdown rates (loss in tensile strength) in contrasting habitats along a 21‐km urban‐industrial reach on a constrained section of the Waikato River, New Zealand's longest river. Rates of gross primary production (2.8–7.8 g O2/m2/d) and ecosystem respiration (3.5–12.7 g O2/m2/d) did not differ consistently between near‐shore (2–3 m from river side) and far‐shore (ca. 10 m from side) locations, urban and industrial reaches or between autumn and spring sampling occasions. Rates of cotton decay (?k) ranged from 0.014 to 0.112 per day and were typically faster at far‐shore locations and in the section of river receiving industrial inputs, but slower in spring compared with autumn. Nonmetric multidimensional scaling analysis of phytoplankton and zooplankton data did not reveal spatial patterns relating to pressure or location (embayment, edge, mid‐river). However, the macroinvertebrate ordination suggested distinct communities for the mid‐river benthos compared with near‐shore communities and a distinction between sites in the urban reach and the industrial reach. Our results suggest that large‐river macroinvertebrate communities and cotton decay rates can be influenced to varying degrees by reach‐scale pressures and local habitat conditions. Monitoring designs in spatially complex rivers should account for habitat heterogeneity that can lead to differences in structural and functional indicator responses. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Understanding of the type and distribution of hydraulic habitat along watercourses is valuable from an ecological and a morphological perspective. The data quantify system state and may be used against benchmark criteria to define system status level and degradation. Current mapping techniques are subjective, time consuming and expensive when carried out over long reaches often requiring specialist field skills. This paper proposes a novel approach to hydraulic habitat mapping using readily available aerial imagery (GoogleEarth and Bing maps) to generate long‐reach digital elevation models, which are subsequently used in a 2D modelling domain (JFlow+) to predict hydraulic habitat in the form of biotope types and distribution from Froude number classification. The approach is tested on a 1‐km reach of the river Wharfe, England, a morphologically and hydraulically varied watercourse. Biotope mapping of the study reach recorded a distribution of 49% pools, 33% glides and 17% riffles, compared with an observed 54% pools, 32% glides, 13% riffles and 1% broken standing waves/chutes, suggesting that gross biotope distribution may be reliably mapped using the technique when compared with field mapping but that depth estimation error leads to classification issues around transition zones. The improved spatial detail and objective mapping achieved by the technique also provide valuable sub‐feature detail on hydraulic habitat variation not picked up by conventional survey. The ease of digital elevation model construction allows for rapid assessment of extended reaches offering an efficient mechanism for whole river ecological assessment, flagging critical sites that would benefit from more detailed field assessment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号