首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Rheophilic fishes are one of the ecological groups of fishes declining most quickly in number due to various habitat modifications and discharge regulations. Artificial rapid increases and decreases in discharge (hydropeaking) can cause severe damage to the eggs of rheophilic fishes. We investigated whether the effects of a water increase in hydropeaking on a spawning ground may be mitigated by a deflector installed at the top of the weir that diverts flow to other sections. At the research site, rheophilic asp (Leuciscus aspius) spawn annually in early spring, and their success might be affected by hydropeaking, with base discharge ranging from 3 to 7 m3 × s−1 and peak discharge ranging from 16 to 25 m3 × s−1 occurring 4 to 7 times during the asp spawning season and egg development period. To protect the adhesive eggs from detachment during peak discharge, a flow deflector (a wooden wall at the selected part of the weir) was installed to regulate discharge on the protected spawning ground. This measure allowed normal discharge under base flow conditions. During peak flow, a significant portion of the additional water was directed to the part of the river channel where egg abundance was lower and to the mill channel, where asp spawning was not present. While the total discharge increased 4.1 times compared to the base flow, the water discharge in the protected spawning ground increased only 2.7 times. This resulted in more than half of the asp eggs being retained in the protected channel. Although the use of such a measure is limited to specific local conditions where eggs are located just downstream of the weir, it can be a valid solution in highly fragmented rivers with hydropeaking and can lead to higher recruitment of rheophilic fishes.  相似文献   

2.
Stranding of fish due to flow reductions has been documented in the near shore of the Columbia and Kootenay Rivers, Canada, and can result in sub‐lethal or lethal effects on fish. Ten years (1999–2009) of monitoring data have been collected at sites below two hydro‐electric dams (Hugh‐L‐Keenleyside and Brilliant Dam) following flow reductions. A generalized linear mixed effects model analysed the probability of a stranding event in relation to environmental and operational variables including the rate of change in the water levels, the duration of shoreline inundation prior to a reduction (wetted history), the river stage, the magnitude of the reduction, distance downstream from the dam, time of day, day of year (season) and whether a site had been physically altered to mitigate stranding. The results demonstrated statistically significant effects on stranding risk from minimum river stage, day of the year and whether a site had been physically re‐contoured. The combination of investigated factors giving the highest probability of stranding was a large magnitude reduction completed in the afternoon in midsummer, at low water levels when the near shore had been inundated for a long period. This research is significant in its approach to assessing years of ecosystem scale monitoring data and using the modelling results to determine ways for these findings to be applied in regulated river management to minimize fish stranding. It also highlighted data gaps that require addressing and provides ecosystem scale results to compare with stranding studies carried out in mesocosms. © 2014 The Authors. River Research and Applications published by John Wiley & Sons Ltd.  相似文献   

3.
Fluctuations in river flows result from diverse natural and/or anthropogenic causes. Hydropeaking, an important anthropogenic flow alteration, results from the rapid increase or decrease of water releases from reservoirs at hydroelectric power stations to meet variable demand for electrical power, thereby altering the flow regime of the river downstream of the hydroelectric power station. Hydropeaking causes short‐term, artificial fluctuations in flow on an hourly, daily, and/or weekly basis. The frequent and regular occurrences of these high and low flow events are fundamentally different from natural flood and drought events and may affect fish fauna. We compared the fish species composition and fish age and size distributions in the Saskatchewan River (Saskatchewan, Canada) downstream of a hydropeaking facility with results from an unaffected Reference Site situated upstream of the reservoir. Lower fish diversity was observed in the 2 downstream sites (Sites 1 and 2, number of species = 11 and 9, respectively) closest to Generating Station in comparison to Site 3 (n = 15) situated further downstream and the upstream reference site (n = 13). There was no difference in the age–length relationship of any of the fish species above and below the Generating Station suggesting that fish grew at the same rates. However, lower numbers of small‐bodied and juvenile fish were caught downstream of the Generating Station suggesting the possibility of increased mortality, decreased habitat suitability, or altered behaviour of small fish downstream of the dam. These data illustrate potential impacts of hydropeaking power stations and has management implications.  相似文献   

4.
    
Research on hydropeaking in Austria started in the 1990s and the implementation of the WFD stipulated large research projects since the year 2009. The first research projects supported the process understanding and in a second investigation step, measures were evaluated. The mountains in the region of Tyrol create large heads and thus support the production of flexible energy. In this region, TIWAG is operating 9 large (>10 MW) and 27 small (<10 MW) hydropower plants, with an installed capacity of about 1,550 MW and a mean annual production of 3,000 GWh. As the governmental energy strategy foresees an extension of the hydropower production in Austria, suitable options were selected in 2004 by TIWAG and the water management framework plan for Western Tyrol was developed. This strategic planning instrument proposes five large power plants, with a generation of 1,800 GWh/year of renewable energy, which enables to reach the WFD targets, because the concept includes hydropeaking mitigation by combining buffer reservoirs (impoundments), diversion hydropower plants, and retention basins. We present our promising concept of hydropeaking mitigation and exemplify this based on the GKI, a hydropeaking diversion hydropower plants (HPP) at the Swiss/Austrian border as well as the Silz hydropeaking retention basin, with a volume of about 300,000 m3. As the presented case studies are the largest measures for hydropeaking mitigation being currently implemented in Central Europe, they have pilot-character. Thus, ongoing research and monitoring programs are expected to improve the knowledge about hydropeaking mitigation.  相似文献   

5.
    
Hydropower is an important tool in the struggle for low-emission power production. In the Nordic countries, hydropower operating conditions are expected to change and work more in conjunction with intermittent power production. This in turn might increase the amount of hydropeaking events in the reaches downstream of hydropower plants. The current work investigates the influence of highly flexible, high-frequency hydropeaking on the hydrodynamics in the downstream reach. By quantifying four different dynamic stages in the study reach, the influence of the hydropeaking frequencies was investigated in the bypass reach of the Stornorrfors hydropower plant in the river Umeälven in northern Sweden. The hydrodynamics in the study reach were numerically modelled using the open source solver Delft3D. Eight different highly flexible future hydropeaking scenarios, varying from 12 to 60 flow changes per day, were considered. A method for identifying four hydropeaking stages—dewatering, dynamic, alternating and uniform —was introduced. The hydropeaking frequency directly decided the stage in most of the study reach. Furthermore, a Fourier analysis showed a significant difference between the stages and their corresponding power spectra. The classification of stages put forward in this work provides a novel, simple method to investigate the hydrodynamics due to hydropeaking in a river reach.  相似文献   

6.
    
Hydropeaking dam operation and water extractions for irrigation have been broadly stated as alterations to natural flow regimes, which have also been noticed in the Biobío Watershed, in Central Chile, since 1996. In the Biobío River, most of native fish species are endemic and very little is known about them. Their ecological and social values have never been estimated, and there is lack of information about their habitat preferences. Furthermore, changes on fish habitat availability due to natural and/or man‐made causes have not been evaluated. In this study, eight native fish species, in a representative reach of the Biobío River, were studied and their preferred habitats were surveyed and characterized. A hydrodynamic model was built and linked to the fish habitat simulation model CASiMiR. Fuzzy rules and fuzzy sets were developed for describing habitat preference of the native fish species. CASiMiR was then used to simulate how physical habitat conditions vary due to flow control (i.e. upstream dams). Results show how overall habitat quality, expressed as weighted usable area (WUA) and hydraulic habitat suitability (HHS), changes and fluctuates due to the dam operation and how the daily hydropeaking is influencing quantity, quality and location of different habitats. The study suggests that the analysed fish are highly susceptible to flow control, as dams are currently operated, and fish habitat improvement suggestions are proposed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
    
Ephemeral deflation basin lakes are widespread throughout arid and semiarid regions of the Murray–Darling Basin in Australia. Although they are diverse, productive habitats, the water resources development has generally caused significant declines in their ecological condition. Managers are currently trying to protect or restore these systems, however, without an adequate theoretical framework on which to base management decisions. This is because the existing conceptual models provide little insight into the effects of any component of the flow regime except flooding. This paper reviews the effects of flooding and drying on lakes, using the information and conclusions therein to propose a conceptual model that identifies five stages in the flooding and drying cycle. This conceptual model incorporates elements of the Flood Pulse Concept, Trophic Cascade models and the Geomorphic–Trophic model, as they apply to these highly variable water systems.  相似文献   

8.
    
Invasive macrophyte species are a threat to native biodiversity and often grow to nuisance levels, therefore, making control options necessary. Macrophyte control can have pronounced impacts on littoral fish by reducing habitat heterogeneity and the loss of profitable (high density of invertebrates) foraging areas. Yet, there is little known about the impacts of macrophyte removal on invertebrates themselves. We conducted a macrophyte removal experiment, that is the cutting of channels into dense macrophyte beds, to investigate the impact of mechanical macrophyte control on invertebrate and fish communities in a littoral zone dominated by the invasive macrophyte Lagarosiphon major. The effect of macrophyte removal had only a temporary effect on macrophyte areal cover (4 months). Nevertheless, the treatment increased light penetration significantly. However, we could not detect any difference in epiphyton biomass. Invertebrate biomass increased in macrophyte stands 4 months after treatment and there was a shift in the invertebrate community composition. Mechanical control had no effect on invertebrate biodiversity. The higher invertebrate biomass did not translate into a higher fish density in the treated areas. The results of this study indicated that partial mechanical removal is a suitable option to control unwanted macrophyte stands. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
    
Conventional methods for surveying diadromous fish migration from marine coastal waters to freshwater habitats are mainly based on electrofishing, a non‐optimal technique for the study of fish migrations in rivers, and fishermen catch data. Underwater video has been recognized for a long time as a good alternative, but those approaches usually require intensive labour for retrieving the information from the video sequences. To overcome these problems, an underwater video system specifically designed for field work (low‐weight, low‐cost and autonomous) named BichiCAM has been developed for automatically counting, measuring and tracking fish observed in video sequences. The efficiency and precision of the BichiCAM system were tested by filming Sicyopterus lagocephalus juveniles passing through the camera field of vision in the Saint‐Etienne River, Reunion Island, Western Indian Ocean. The BichiCAM system accurately measured fish length of the observed individuals when lens distortion of the camera was corrected, and the error percentages on the measurements presented a standard deviation of 5.1% of the total length. The BichiCAM system provides a powerful tool that will not only facilitate research on migrating fishes and invertebrates' communities but also allow studies of the effectiveness of fishways associated to dams or the impacts of fishery activities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
    
Hydroelectric dam operation can alter discharge and temperature patterns, impacting fish populations downstream. Previous investigations into the effects of river regulation on fish have focused on a single species within a river, yet different results among studies suggest the potential for species‐specific impacts. Here, we compare the impacts of two different hydropeaking regimes relative to a naturally flowing river on three ecologically important members of the forage fish community: longnose dace (Rhinichthys cataractae), slimy sculpin (Cottus cognatus) and trout‐perch (Percopsis omiscomaycus). Annual growth, estimated from otolith back‐calculations, was higher for each of the species in the regulated river relative to the naturally flowing river but did not differ between hydropeaking regimes. Condition was assessed using weight–length relationships and differed between rivers for each species, and between hydropeaking regimes for longnose dace and slimy sculpin. Survival of longnose dace and slimy sculpin was lower in the regulated river relative to the naturally flowing river, but comparable between rivers for trout‐perch. Annual growth was significantly related to mean summer discharge in the regulated river and to mean summer water temperature in the naturally flowing river for each species, and significantly different slopes among species indicate species‐specific responses to discharge and temperature alterations. This study demonstrates different biological responses among fish species within rivers to regulation in general, as well as to specific hydropeaking regimes. Future studies should focus on multiple species and multiple indicators of fish health to more fully characterize the impacts of river regulation on downstream fish communities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Epiphytic macroinvertebrate communities of four coastal wetlands of Green Bay, Lake Michigan were compared by taxonomic composition, feeding group composition, and environmental influences using Bray-Curtis ordination. Ordination scores from the most sheltered oligotrophic site, Portage Marsh, were distinct from the eutrophic, exposed sites located in middle and lower Green Bay— Seagull Bar, Little Tail Point, and Dead Horse Bay. Epiphyton chlorophyll a, phytoplankton chlorophyll a, and specific conductance strongly correlated to the ordination axes, indicating the trophic gradient within Green Bay was a primary environmental influence. The feeding group compositions at the sites were consistent with the type and abundance of food available. Portage Marsh is a scraper-shredder system, with macroinvertebrates feeding mainly on epiphyton and coarse particulate detritus. Dead Horse Bay and Little Tail Point are collector systems, sustained by phytoplankton and fine particulate organic matter. Seagull Bar is intermediate in trophic position along the ordination axes, but more closely resemble the latter two sites. The type and abundance of food resources available to these invertebrate communities are influenced by wave exposure, light attenuation, nutrient levels, and algae levels of the littoral and pelagial waters. Macroinvertebrate communities were sensitive to shifts in food resources, which generated shifts in trophic structure.  相似文献   

12.
Many hydropower plants are operated as peak generators or frequency controllers, because they can change their output quickly to follow the fluctuating power demand. When meeting peak load requirements, a power station is turned on at a particular time during the day, generates power at a constant load for a certain number of hours, and is then turned off or set to a different load for another time period, resulting in a high variability inflow discharges. Where reservoir hydro schemes are operated primarily to provide peak load services, there are particular environmental risks that should be considered in any environmental impact assessment. At a minimum these should focus on water quality, fluvial geomorphology, riparian vegetation, macro-invertebrate and fish communities underpinned by a sound hydrological analysis. Frequent temperature changes may occur downstream of a peaking power station; increased seepage-induced erosion of riverbanks due to frequent water level drawdowns; and impacts to macro-invertebrate and fish communities due to rapid and frequent in channel habitat conditions. With a sound understanding of the potential environmental issues, there are strategies that can be employed at the siting and design stage to minimize or mitigate these risks, including but not limited to minimum environmental flows, ramping rules, utilization of a re-regulation storage and localized treatment works.  相似文献   

13.
    
This article proposes and demonstrates a new classification system of fish population level effects of hydropeaking operations in rivers. The classification of impacts is developed along two axes; first, the hydromorphological effect axis assesses the ecohydraulic alterations in rivers introduced by rapid and frequent variations in flow and water level, second the vulnerability axis assesses the site-specific vulnerability of the fish population. Finally, the population level impact is classified into four classes from small to very large by combining the two axes. The system was tested in four rivers in Norway exposed to hydropeaking, and they displayed a range of outcomes from small to very large impacts on the salmon populations. The river with a relatively high base flow and ramping restrictions scored better than rivers with the lower base flow or limited ramping restrictions, indicating that hydropeaking effects can be mitigated while maintaining high hydropower flexibility. Most effect factors could easily be calculated from timeseries of discharge and water level, whereas the use of hydraulic models to estimate potential stranding areas may require more work. The vulnerability factors are mainly qualitative and depend more heavily on expert judgments and are thus more uncertain. The system was deemed suitable for the purpose of supporting management decisions for rivers exposed to hydropeaking operations. It evaluates the severity of the additional pressures due to hydropeaking operations and proved useful to identify mitigating measures. While the system was developed for Atlantic salmon river systems, it could be adapted to other species or systems.  相似文献   

14.
    
Effects of riparian vegetation on fluvial sediment dynamics depend on morphological traits of the constituent species. Determining the effects of different morphological guilds on sedimentation rates, as influenced by multiple aspects of dam operations, can help identify viable strategies for streamflow and vegetation management to achieve riparian resource goals. Plants of increasing size and branching density or complexity have been found to have greater effects on sedimentation in free‐flowing systems; however, this relationship could differ in regulated rivers. We tested the hypothesis that plant guilds of increasing height and branching complexity would be positively associated with sedimentation rates on 23 sandbars deposited in zones of recirculating flow (eddies) along the Colorado River in Grand Canyon. We used an image‐based vegetation classification and digital elevation models from annual topographic surveys to track associations between six plant morphological guilds and topographic change over 5 years. Vegetation had significant associations with deposition after accounting for geomorphic setting, but the ordinal guild scale was not positively correlated with deposition magnitude. Instead, low‐statured rhizomatous and herbaceous guilds were particularly effective at capturing sediment in the separation zone of sandbars, whereas tall herbs and large shrubs were most effective at capturing sediment in reattachment zones. These nuanced interactions between geomorphic position and morphological guild may be a direct consequence of flow regulation through modifications to physical deposition and erosion processes. Flow regulation may also select for a narrow subset of morphological guilds, reducing the diversity of vegetation feedbacks on sedimentation and emphasizing geomorphic drivers.  相似文献   

15.
    
Riverine habitats have been altered and fragmented from hydroelectric dams and change spatially and temporally with hydropower flow releases. Hydropeaking flow regimes for electrical power production inundate areas that create temporary suitable habitat for fish that may be rapidly drained. Robust redhorse Moxostoma robustum, an imperiled, rare fish species, uses such temporary habitats to spawn, but when power generation ceases, these areas are dewatered until the next pulse of water is released. We experimentally simulated the effects of dewatering periods on the survival of robust redhorse eggs and larvae in the laboratory. Robust redhorse eggs were placed in gravel in eyeing‐hatching jars (three jars per treatment) and subjected to one of four dewatering periods (6, 12, 24 and 48 h), followed by 12 h of inundation for each treatment, and a control treatment was never dewatered. Egg desiccation was observed in some eggs in the 24‐ and 48‐h treatments after one dewatering period. For all treatments except the control, the subsequent dewatering period after eggs hatched was lethal. Larval emergence for the control treatment was observed on day 5 post‐hatching and continued until the end of the experiment (day 21). Larval survival was significantly different between the control and all dewatering treatments for individuals in the gravel. These findings support the need for hydropower facilities to set minimum flows to maintain inundation of spawning areas for robust redhorse and other species to reduce dewatering mortality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
    
Breakdown rates and colonisation of leaves from four tree or scrub species differing in quality are studied upstream and downstream of the Canales reservoir, a dam located in the headwater of the River Genil, Sierra Nevada, in southern Spain. This dam, with hypolimnetic release, displays short‐term fluctuations of discharge and nutrient enrichment in the tailwater during the study period. Breakdown rates of the four leaf species studied do not differ between sites, despite the higher dissolved nutrient concentration in the tailwater. This lack of differences is attributed to the potentially high physical breakage of leaves during peak flows that are of higher magnitude at the upstream site. The invertebrate density in leaf bags does not differ between sites, and Chironomidae and Ephemeroptera are the numerically dominant taxa at both sites. With regard to functional feeding groups, the scarcity and lack of significant differences between sites for shredders do not match the trend predicted by the Serial Discontinuity Concept in relation to the effect of a headwater dam. Possibly, the discharge fluctuations at both sites causes excessive instability of the natural substrate (leaf litter) for the shredder guild. However, as expected, the biomass of collectors colonising leaf bags is significantly higher at the tailwater, which might be explained not in terms of quantity, but as a consequence of the higher nutritional quality of the fine particulate organic matter (FPOM) accumulated in leaf bags at this site, owing to the eutrophication caused by the dam. Despite the scarcity of functional shredders at both sites, at the community level, the leaf material is significantly more ingested at the upstream site, suggesting the importance of this source of nutrition for the trophic web at this site in contrast with the tailwater, as predicted by the Serial Discontinuity Concept. This also suggests that caution is needed in using functional feeding groups as trophic guilds to infer system‐level trophic dynamics in streams, given the prevalence of generalist feeders among benthic macroinvertebrates in these environments. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
    
Knowledge of the fisheries status of dams within Uasin Gishu County was needed prior to the government's plan to introduce fish and fisheries in the area. The dams were constructed in the 1950s and stocked with tilapia for local consumption, recreation and control of macrophytes. The Nile tilapia (Oreochromis niloticus) was selected for the present study due to its establishment success and popularity in the Kenyan market. Water samples were collected at subsurface levels for phytoplankton analysis and compared with the phytoplankton found in the stomachs of O. niloticus, revealing the food preference of the fish in a natural environment. Fish samples were collected with gillnets and beach seines. The results of the present study identified the most important food items for the fish were Chlorophyceae (green algae), Bacillariophyceae (diatoms) and Cyanophyceae (blue‐green algae). The fish exhibited a relative condition factor of about 1.00, indicating their robustness or well‐being in the dams. The LM50was reached at 18–20 cm class interval, which coincides with the most critical breeding biomass needing some kind of protection for sustainable management of the fishery.  相似文献   

18.
Hydropeaking caused by small-scale hydropower plants creates rapid changes in the intensity, frequency, and persistence of river flows. These changes can induce stress in fish across all life-stages and, may negatively impact fish communities. Rapid increases in the flow velocity may cause fish to avoid unstable habitats, seeking out nearby refuges to reduce their energy expenditure. A lateral flow-refuge constructed from maritime plywood (0.4 m wide × 0.5 m long × 0.4 m high) was installed in the left river bank, 40 m downstream of the Bragado hydropower plant. A multispectral stereo underwater camera trap was installed inside the flow-refuge to monitor fish over one-month period. The camera recorded images continuously both during base and peak flow conditions. Two different peak-flow conditions were detected: peak and high peak-flow conditions. The peak flow conditions correspond to a turbine discharge of 0.67 m3/s (peak), and 2.1 m3/s (high peak) at full load. The base-flow condition corresponded to a discharge of 0.064 m3/s. The fish presence inside the refuge was observed to be significantly higher during the peak condition when compared with the base and high peak conditions. These findings strongly indicate that the flow during the high peak condition prevented fish from using the flow-refuge due to the increase in the current. We hypothesize that this may be due to the increase in the current velocity and increased levels of ambient turbulence near the refuge. An alternate hypothesis is that the spatial distribution of velocities and depths during the high peak condition induced fish to inhabit areas with poor access to the refuge. The results of this study indicate that fish refuges can be used to successfully mitigate hydropeaking, and that their use by fish can depend on the flow regime.  相似文献   

19.
    
Hydropeaking due to hydropower production can have negative impacts on aquatic fauna. One of the mechanisms for causing impacts on fish and aquatic macroinvertebrates is linked to the rapid dewatering of habitats, which can result in stranding or trapping. The magnitude of these impacts depends both on the characteristics of the flow variations and of the river morphology, as well as biological parameters (species, behavior, etc). When discharge is rapidly reduced, the risk of impacts on fishes (and notably the risk of fish stranding in dewatered zones along the riverbank) is frequently assessed by calculations of vertical ramping velocity among other methods. However, to assess fish stranding risks, the lateral ramping velocity calculated as a horizontal ramping rate (HRR) appears to be a more relevant indicator as it directly measures shoreline drawdown rates. HRR has the advantage of integrating river morphology, but it remains challenging to calculate HRRs in complex situations such as braided rivers. Using hydraulic simulations of the Durance, a gravel bed braided river, we have developed an innovative approach for HRR calculation. Considering two simulated flows, the algorithms for the calculations require partitioning the finite elements into wet and drying meshes. To recommend rates of lowering discharges during hydropeaking events, further studies are required to evaluate more precisely HRR limits for fish stranding regarding biotic and abiotic parameters: species, sizes, nychthemeral cycles, temperature, substrate, and so forth.  相似文献   

20.
    
Anthropogenic factors such as dam construction and hydropower generation can dramatically alter the flow regime of rivers and may impact growth of aquatic organisms. Using incremental growth techniques, annual growth of Alabama bass Micropterus henshalli and redeye bass M. coosae in the Tallapoosa River, Alabama, USA, was evaluated in response to variation in flow regime. Fish were collected from the Tallapoosa River above Harris Dam (unregulated site) and at two sites downstream of the dam (regulated sites), as well as Hillabee Creek (unregulated tributary). Flow variables were calculated for each growth year, and the best model that described growth for each species at each location was determined using Akaike's Information Criterion. Additionally, growth increments of each species at ages 1, 2, and 3 were compared between years characterized by low and high flow variability. Age was the best explanatory variable that described growth in all models, although flow variables were included in more than half the models. In all cases, annual and seasonal flow variables had low predictive power and explained <2% of the variation in growth. Growth was higher for age‐1 fish in years with less flow variation but was similar among years for age‐2 and age‐3 fish. Overall, this study provided little evidence that annual growth of either species was heavily influenced by flow in this regulated river.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号