首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a solution to the singular H control problem via state feedback for a class of nonlinear systems. It is shown that the problem of almost disturbance decoupling with stability plays a fundamental role in the solution of the considered problem. We also point out when the singular problem can be reduced to a regular one or solved via standard H technique. We must stress that the solution of the singular problem is obtained without making any approximation of it by means of regular problems. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
This paper formulates and solves the robust H control problem for discrete‐time nonlinear switching systems. The H control problem is interpreted as the l2 finite gain control problem and is studied using a dissipative systems theory for switched systems. Both state and measurement feedback control problems are formulated as dynamic games and solved using dynamic programming. The partially observed dynamic game corresponding to the measurement feedback control problem is solved by transforming into a completely observed, full state infinite‐dimensional game problem using information states. Our results are illustrated with an example. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
This paper focuses on the optimal robust reliable H control for a class of uncertain nonlinear systems with actuator faults. A new method of annihilating uncertain matrix is proposed. Based on this approach, a new method of disposing of the phenomenon of uncertain matrices multiplication is provided. In accordance with the method, the optimal robust reliable H control problem for uncertain nonlinear systems is settled by employing state feedback, in terms of linear matrix inequality (LMI). Finally, two illustrative examples are given to show the feasibility and validity of the proposed method.  相似文献   

4.
This paper studies the problem of finite-time H control for strict feedback nonlinear systems with external disturbance. The finite-time stability theory, H control method, backstepping technique, together with adding a power integrator tool are combined to design a finite-time H state feedback controller. The obtained controller can make the closed-loop system finite-time convergent, and the influence of the external disturbance is attenuated to a given degree. Two numerical examples are presented to show the effectiveness and feasibility of the proposed method. Meanwhile, the proposed method is also applied to robot manipulators.  相似文献   

5.
This paper investigates the problem of simultaneous robust normalization and delay‐dependent H control for a class of singular time‐delay systems with uncertainties. Not only the state and input matrices but also the derivative matrices of the considered systems are assumed to have uncertainties. New sufficient conditions for the existence of a proportional plus derivative state feedback H controller are derived as LMIs such that the closed‐loop singular system is normal, stable, and guarantee a specific level of performance. Specially, a static state feedback H controller alone or a state‐derivative feedback H controller alone can unite to be dealt with by applying our proposed method. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach in this paper. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
This article considers the problem of H control for two-dimensional (2-D) singular delayed systems in Roesser models. The problem to be addressed is the design of a state feedback controller such that the acceptability, internal stability and causality of the resulting closed-loop system is guaranteed and a prescribed H performance level is ensured. In terms of a linear matrix inequality (LMI), a sufficient condition for the solvability of the problem is obtained. A desired state feedback controller can be designed by solving a certain LMI. A numerical example is provided to demonstrate the application of the proposed method.  相似文献   

7.
This paper concerns the problem of robust H sliding mode control for a class of singular stochastic nonlinear systems. Integral sliding mode control is developed to deal with this problem. Based on the integral sliding surface of the design and linear matrix inequality, a sufficient condition which guarantees the sliding mode dynamics is asymptotically mean square admissible and has a prescribed H performance for a class of singular stochastic nonlinear systems is proposed. Furthermore, a sliding mode control law is synthesized such that the singular stochastic nonlinear system can be driven to the sliding surface in finite time. Finally, a numerical example is proposed to illustrate the effectiveness of the given theoretical results.  相似文献   

8.
In this paper, we investigate the H control problem for a class of cascade switched nonlinear systems consisting of two nonlinear parts which are also switched systems using the multiple Lyapunov function method. Firstly, we design the state feedback controller and the switching law, which guarantees that the corresponding closed‐loop system is globally asymptotically stable and has a prescribed H performance level. This method is suitable for a case where none of the switched subsystems is asymptotically stable. Then, as an application, we study the hybrid H control problem for a class of nonlinear cascade systems. Finally, an example is given to illustrate the feasibility of our results. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

9.
This paper addresses the problem of robust H control for uncertain continuous singular systems with state delay. The singular system under consideration involves state time delay and time‐invariant norm‐bounded uncertainty. Based on the linear matrix inequality (LMI) approach, we design a memoryless state feedback controller law, which guarantees that, for all admissible uncertainties, the resulting closed‐loop system is not only regular, impulse free and stable, but also meets an H‐norm bound constraint on disturbance attenuation. A numerical example is provided to demonstrate the applicability of the proposed method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
《Applied Soft Computing》2008,8(2):949-958
This paper discusses H output feedback control of discrete-time Takagi–Sugeno fuzzy systems with immeasurable premise variables. When we consider the output feedback control of Takagi–Sugeno fuzzy systems, the selection of premise variables plays an important role. If the premise variable is the state of the system, then a fuzzy system describes a wide class of nonlinear systems. However, the state is not measurable in the output feedback control problem. In this case, a control design of the underlying nonlinear system based on parallel distributed compensation is infeasible because a controller depends on the immeasurable state variable. In this paper, we introduce a new method to treat fuzzy systems with immeasurable premise variables and consider a design method of H output feedback control problem. We formulate this fuzzy control problem as a robust H control of an uncertain system. Numerical examples are given to illustrate our methods.  相似文献   

11.
This article focuses on the state feedback H control problem for commensurate fractional-order systems with a prescribed H performance. For linear time-invariant fractional-order systems, a sufficient condition to guarantee stability with H performance is firstly presented. Then, by introducing a new flexible real matrix variable, the feedback gain is decoupled with complex matrix variables and further parametrised by the new flexible matrix. Moreover, iterative linear matrix inequality algorithms with initial optimisation are developed to solve the state feedback H suboptimal control problem for fractional-order systems. Finally, illustrative examples are given to show the effectiveness of the proposed approaches.  相似文献   

12.
A framework is developed for the general nonlinear H output feedback control problem, in which two major restrictions are relaxed, i.e., the non-singular penalty in H cost and the positive definite solution of Hamilton–Jacobi inequality at present state space nonlinear H control literatures. As illustrated in an example, positive semidefinite solution simplifies the structure of the H controller. Based on this framework, some sufficient conditions are derived. While specialized to linear systems, the controller reduces to the so-called central controller. © 1997 by John Wiley & Sons, Ltd.  相似文献   

13.
In this paper the problem of H dynamic feedback control for fuzzy dynamic systems has been studied. First the problem of H dynamic feedback controller designs for complex nonlinear systems, which can be represented by Takagi‐Sugeno (T‐S) fuzzy systems, is presented. Second, based on a Lyapunov function, four new dynamic feedback H fuzzy controllers are developed by adequately considering the interactions among all fuzzy sub‐systems and these dynamic feedback H controllers can be obtained by solving a set of suitable linear matrix inequalities. Finally, two examples are given to demonstrate the effectiveness of the proposed design methods. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

14.
This paper investigates the stabilization and H control problem of nonlinear switched Hamiltonian systems (NSHSs) subject to actuator saturation (AS) under arbitrary switching paths. First, based on the saturating actuator property, an appropriate state feedback is designed under a realistic assumption for the stabilization of NSHSs with AS. Then, an H controller is designed for NSHSs subject to AS with external disturbances in order to attenuate the disturbances. Futhermore, the results obtained for NSHSs are applied to study the stabilization and H control of switched nonlinear systems with AS via the Hamiltonian realization method. Finally, simulation examples show the efficiency of the methods and results proposed in this paper.  相似文献   

15.
Following recent works on continuous-time nonlinear H-control, where connections with game theory and passivity conditions have been set, the present paper studies the corresponding problem for discrete-time systems. The paper describes sufficient conditions for the existence and the construction of a feedback law which imposes a prescribed level of disturbance attenuation with internal stability. Both cases of state feedback and measurement feedback are considered.  相似文献   

16.
In this article, finite impulse response (FIR) control is addressed for H output feedback stabilisation of linear systems. The problem we deal with is the construction of an output feedback controller with a certain FIR structure such that the resulting closed-loop system is asymptotically stable and a prescribed H norm bound constraint is guaranteed. Some solvability conditions are suggested in this article. Sufficient conditions are derived to obtain a suboptimal solution of the H FIR control problem via convex optimisation. Also, an equivalent condition for the existence of H FIR control is presented in the set of linear matrix inequalities (LMIs) and a reciprocal matrices equality constraint. An effective computational algorithm involving LMIs is suggested to solve a concave minimisation problem characterising a local optimal solution of the H FIR control problem. Numerical examples demonstrate the validity of the proposed H FIR control and the numerical efficiency of the proposed algorithm for FIR control.  相似文献   

17.
Two H optimization problems of a nonlinear tracking control system: the problem of a nonlinear controller and the problem of a nonlinear plant are considered in the paper. The describing function method is used for linearization of a feedback control system. Theorems, which enable one to replace the optimization of a nonlinear system by the optimization of an approximate linear system are proven in the paper. Methods of H optimization are used to find the structure of an optimal controller of the approximate system. © 1997 by John Wiley & Sons, Ltd.  相似文献   

18.
This paper addresses the problem of designing an Hfuzzy state‐ feedback (SF) plus state‐derivative‐feedback (SDF) control system for photovoltaic (PV) systems based on a linear matrix inequality (LMI) approach. The TS fuzzy controller is designed on the basis of the Takagi‐Sugeno (TS) fuzzy model. The sufficient condition is found such that the system with the fuzzy controller is asymptotically stable and an Hperformance is satisfied. First, a dc/dc buck converter is considered to regulate the power output by controlling state and state‐derivative variables of PV systems. The dynamic model of PV systems is approximated by the TS fuzzy model in the form of nonlinear systems. Then, based on a well‐known Lyapunov functional approach, the synthetic is formulated of an Hfuzzy SF plus SDF control law, which guarantees the L2‐gain from an exogenous input to the regulated output to be less than or equal to some prescribed value. Finally, to show effectiveness, the simulation of the PV systems with the proposed control is assessed by the computer programme. The proposed control method shows good performance for power output and high stability for the PV system.  相似文献   

19.
This paper investigates the H observer design problem for a class of nonlinear discrete‐time singular systems with time‐varying delays and disturbance inputs. The nonlinear systems can be rectangular and the nonlinearities satisfy the one‐sided Lipschitz condition and quadratically inner‐bounded condition, which are more general than the traditional Lipschitz condition. By appropriately dealing with these two conditions and applying several important inequalities, a linear matrix inequality–based approach for the nonlinear observer design is proposed. The resulting nonlinear H observer guarantees asymptotic stability of the estimation error dynamics with a prescribed performance γ. The synthesis condition of H observer design for nonlinear discrete‐time singular systems without time delays is also presented. The design is first addressed for one‐sided Lipschitz discrete‐time singular systems. Finally, two numerical examples are given to show the effectiveness of the present approach.  相似文献   

20.
The problem of quadratic stabilization for a class of nonlinear systems is examined in this paper. By employing a well-known Riccati approach, we develop a technique for designing a state feedback control law which quadratically stabilizes the system for all admissible uncertainties. This state feedback control law consists of linear and nonlinear feedback control terms. The linear feedback control term is generalized from a well-known H result, while the nonlinear term can be viewed as a correcting term for the presence of nonlinear bounded uncertainty. This stabilization result is extended to static output feedback and to systems for which the nonlinear uncertainty satisfies generalized matching conditions. Furthermore, we point out that in the presence of nonlinear uncertainty the global quadratic stability may be destroyed by some arbitrary small mismatched uncertainty in the matrix, and proceed to establish the region of semi-global quadratic stability of the controlled system. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号