首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with an efficient dynamic channel allocation (DCA) technique suitable for applications in mobile satellite cellular networks. A cost function is defined to allow an optimum selection of channels to be allocated on demand. A mobility model suitable for low earth orbit (LEO) satellite systems is presented. The performance of the novel DCA technique in terms of call blocking probability has been derived by simulations. The obtained results are compared with those achieved by a fixed channel allocation (FCA) technique to show a better behaviour.  相似文献   

2.
The authors discuss the performance analyses of a novel demand assignment multiple access (DAMA) scheme addressing the special characteristics of the mobile radio service (MRS), and a new method for dynamically allocating a common pool of channels to both MRS and mobile telephone service (MTS) to improve channel utilization. The new DAMA scheme makes use of call queuing, batch processing, and pipelined signaling to minimize call setup overhead for MRS traffic. MRS call setup delays were analyzed by simulation modeling of a mobile satellite system (MSS) with many mobile voice-dispatch networks operating over a multiple spot beam satellite to investigate the effects of traffic volume, batch size, and batch service disciplines. A reserved channel margin algorithm for dynamic channel allocation was shown to be effective in harmonizing the different call setup performance requirements for MTS and MRS. Numerical results show that dynamic channel allocation applied to a common pool of 40 channels enables a 20-25% increase in the number of mobile terminals compared with a fixed allocation of 20 channels to each of the two services  相似文献   

3.
In future personal communications networks (PCNs) supporting network-wide handoffs, new and handoff requests will compete for connection resources in both the mobile and backbone networks. Forced call terminations due to handoff call blocking are generally more objectionable than new call blocking. The previously proposed guard channel scheme for radio channel allocation in cellular networks reduces handoff call blocking probability substantially at the expense of slight increases in new call blocking probability by giving resource access priority to handoff calls over new calls in call admission control. While the effectiveness of a fixed number of guard channels has been demonstrated under stationary traffic conditions, with nonstationary call arrival rates in a practical system, the achieved handoff call blocking probability may deviate significantly from the desired objective. We propose a novel dynamic guard channel scheme which adapts the number of guard channels in each cell according to the current estimate of the handoff call arrival rate derived from the current number of ongoing calls in neighboring cells and the mobility pattern, so as to keep the handoff call blocking probability close to the targeted objective while constraining the new call blocking probability to be below a given level. The proposed scheme is applicable to channel allocation over cellular mobile networks, and is extended to bandwidth allocation over the backbone network to enable a unified approach to prioritized call admission control over the ATM-based PCN  相似文献   

4.
The analysis of both the performance and capacity of direct sequence CDMA in terrestrial cellular systems has been addressed in the technical literature. It has been suggested that CDMA be used as a multiple access method for satellite systems as well, in particular for multispot beam low Earth orbit satellites (LEOS). One is tempted to argue that since CDMA works well on terrestrial links, it will nominally work as well on satellite links. However, because there are fundamental differences in the characteristics of the two channels, such as larger time delays from the mobile to the base station and smaller multipath delay spreads on the satellite channels, the performance of CDMA on satellite links cannot always be accurately predicted from its performance on terrestrial channels. In the paper, the authors analytically derive the performance of a CDMA system which operates over a low Earth orbiting satellite channel. They incorporate such effects as imperfect power control and dual-order diversity to obtain the average probability of error of a single user  相似文献   

5.
In the near future, low earth orbit (LEO) satellite communication networks will partially substitute the fixed terrestrial multimedia networks especially in sparsely populated areas. Unlike fixed terrestrial networks, ongoing calls may be dropped if satellite channels are shadowed. Therefore, in most LEO satellite communication networks more than one satellite needs to be simultaneously visible in order to hand over a call to an unshadowed satellite when the communicating satellite is shadowed. In this paper, handover characteristics for fixed terminals (FTs) in LEO satellite communication networks are analysed. The probability distribution of multiple satellite visibility is analytically obtained and the shadowing process of satelites for FTs are modelled. Using the proposed analysis model, shadowing effects on the traffic performance are evaluated in terms of the number of intersatellite and interbeam handovers during a call. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
A system concept of a common alternative routing system is proposed for reducing total network costs by integrating satellite communications into public-switched networks, where satellite systems carry overflow traffic from terrestrial systems through common satellite channels. This concept has been realized by a satellite communication system called DYANET (dynamic channel assigning and routing satellite aided digital networks), which provides trunk circuits in combination with terrestrial systems. The key technologies developed for DYANET are a centralized network control system and a transponder hopping demand assignment TDMA (time-division multiple-access) system, to assure single-hop connection and to use satellite channel efficiently. The authors describe the system concept and configuration, the network control system, and the results of its commercial use  相似文献   

7.
A Land-Mobile Satellite System (LMSS) is a satellite-based communications network which provides voice and data communications to mobile users in a vast geographical area. By placing a "relay tower" at a height of 22300 mi, an LMSS can provide ubiquitous radio communication to vehicles roaming in remote or thinly populated area. LMSS is capable of supporting a variety of services, such as two-way alphanumeric service, paging service, full-duplex voice service, and half-duplex dispatch service. A Network Management Center (NMC) will handle the channel requests, channel assignments, and in general the network control functions. A pool of channels is managed at the NMC to be shared by all mobile users. An integrated demand-assigned multiple-access protocol has been developed for the experimental LMSS. The pool of channels is divided into reservation channels and information channels. The information channels can be assigned by the NMC to be either voice channels or data channels. Each mobile user must send a request through one of the reservation channels to the NMC via the ALOHA random-access scheme. Once the request is received and processed, the NMC will examine the current traffic condition and assign an information channel to the user. NMC will periodically update the partitions between the reservation channels, voice channels, and data channels to optimize system performance. Data channel requests are queued at the NMC while voice channel requests are blocked calls cleared. Various operational scenarios have been investigated. Tradeoffs between the data and voice users for a given delay requirement and a given voice call blocking probability have been studied. In addition, performance impacts of such technological advancements as satellite on-board switching and variable bandwidth assignment are discussed.  相似文献   

8.
Efficient dynamic channel allocation techniques with handover queuing suitable for applications in mobile satellite cellular networks, are discussed. The channel assignment on demand is performed on the basis of the evaluation of a suitable cost function. Geostationary and low Earth orbit (LEO) satellites have been considered. In order to highlight the better performance of the dynamic techniques proposed, a performance comparison with a classical fixed channel allocation (FCA) has been carried out, as regards the probability that a newly arriving call is not completely served. It has also been shown that a higher traffic density, with respect to GEO systems, is manageable by means of LEO satellites  相似文献   

9.
随着通信系统的不断发展,对融合地面系统的天地一体化网络的研究越来越多,而卫星通信系统中,由于卫星高速移动等特性,不可避免需要对呼叫的接入切换进行研究。针对天地一体化信息网络需要支持多场景多业务情况下的通信需求,考虑不同呼叫优先级不同,对多优先级的多种呼叫业务进行考虑。根据信道预留的思想,对不同优先级接入与切换呼叫设定不同的可用信道数,优先级越高的呼叫,为其留更多的可用信道以确保其接入信道成功。同时,由于动态信道预留较固定信道预留能够更好地利用信道资源,最终考虑多优先级下的动态信道预留策略。对多优先级动态信道预留与多优先级固定信道预留策略进行仿真验证,发现动态预留方案得到的系统服务质量更好。对于单一策略,发现优先级越高的用户接入与切换呼叫接入信道失败率更低。  相似文献   

10.
This paper describes and analyzes a pipeline protocol for the data message communications of MSAT-X, a proposed experimental satellite-based mobile communications network. A demand-assigned multiple access protocol using pure ALOHA for making reservation requests has been developed for MSAT-X under error-free assumptions. Preliminary propagation studies indicate that the shortterm bit error rate of satellite channels in a mobile environment can be as high as 10-3. Therefore, error-control schemes must be developed to ensure reliable transmissions. In this paper, we propose a retransmission scheme using selective repeat to minimize the end-to-end delay. We also use slotted ALOHA for making reservation requests to increase the overall system throughput. Since the number of channels available for reservation and data channels is essentially fixed for a given voice call blocking probability and a fixed call arrival rate, the analysis presented in this paper is also applicable to the integrated voice and data services of MSAT-X. Various operational scenarios have been investigated.  相似文献   

11.
This paper deals with an efficient dynamic channel allocation (DCA) technique applicable to terrestrial mobile cellular networks. A channel (or resource) is a fixed frequency bandwidth (FDMA), a specific time-slot within a frame (TDMA), or a particular code (CDMA), depending on the multiple access technique used. A cost function has been defined by which the optimum channel to be assigned on demand can be selected. In addition, a suitable mobility model has been derived to determine the effects of handovers on network performance. The performance of the proposed DCA technique has been derived by computer simulations in terms of call blocking and handover failure probabilities. Comparisons with the classical fixed channel allocation (FCA) technique and other dynamic allocation algorithms recently proposed in the literature have been carried out to validate the proposed technique  相似文献   

12.
Low Earth Orbit (LEO) satellite networks are deployed as an enhancement to terrestrial wireless networks in order to provide broadband services to users regardless of their location. In addition to global coverage, these satellite systems support communications with hand-held devices and offer low cost-per-minute access cost, making them promising platform for Personal Communication Services (PCS). LEO satellites are expected to support multimedia traffic and to provide their users with the negotiated Quality of Service (QoS). However, the limited bandwidth of the satellite channel, satellite rotation around the Earth and mobility of end-users makes QoS provisioning and mobility management a challenging task. One important mobility problem is the intra-satellite handoff management. The main contribution of this work is to propose Q-Win, a novel call admission and handoff management scheme for LEO satellite networks. A key ingredient in our scheme is a companion predictive bandwidth allocation strategy that exploits the topology of the network and contributes to maintaining high bandwidth utilization. Our bandwidth allocation scheme is specifically tailored to meet the QoS needs of multimedia connections. The performance of Q-Win is compared to that of two recent schemes proposed in the literature. Simulation results show that our scheme offers low call dropping probability, providing for reliable handoff of on-going calls, good call blocking probability for new call requests, while maintaining bandwidth utilization high.  相似文献   

13.
By using spectrum allocation technology of cognitive radio into integrated satellite and terrestrial networks,the satellite communication network can share spectrum with the terrestrial network and improve utilization efficiency of frequency spectrum in the satellite communication system.Firstly,a spectrum resource sharing model in integrated satellite and terrestrial networks was introduced,and the scenery that cognitive satellite downlinks use the vacant spectrum of terrestrial network was analyzed.Then,the interference and signal model was analyzed.Finally,considering different priority types of satellite terrestrial terminals,a spectrum allocation scheme based on priority was proposed,which could ensure the total throughput in satellite downlink communication and increase the throughput of high-priority terrestrial terminals.  相似文献   

14.
Some next‐generation personal communication systems propose the use of satellite systems for extending geographical coverage of cellular service. We pursue the idea of using satellite capacity to offload congestion within the area serviced by the terrestrial network. An integrated satellite‐cellular network configuration is considered. The performance of this system is evaluated by means of an analytical model for a one‐dimensional (highway) cellular system overlaid with satellite footprints and by means of simulation for a planar cellular network with satellite spot beam support. Under certain re‐use assumptions, an improvement is found in the blocking performance of the integrated system over the Erlang‐B blocking of a purely cellular circuit switched systems. This is achieved by efficient partitioning (static) of the total bandwidth into space and terrestrial segments. Major factors that influence performance, such as different reuse considerations on the satellite and cellular systems, cell size to footprint size ratios, admission control and call management policies, and changes in traffic patterns, are also investigated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The provision of personal communication services is the goal of the evolution of integrated communication systems. The fundamental problem underlying any phase (hand-off, new connection, etc.) of a dynamic resource allocation algorithm in a wireless network is to assign transmission powers, forward (downstream) and reverse (upstream) channels, and base stations such that every mobile of the system can establish a connection. Each one of these problems separately has been studied extensively. We consider the joint problem in a system with two base stations. An algorithm that achieves the optimal assignment is provided. It involves the computation of a maximum matching in a graph that captures the topological characteristics of the mobile locations. The traffic capacities, in terms of expected number of connections per channel, of the forward and reverse channel are obtained and compared, for both cases of power control and nonpower control. It turns out that when the transmission power is fixed, the capacities of the forward and reverse channel are different, while when power control is allowed they are the same. For systems with two mobiles the capacities of the forward and reverse channels are studied analytically. Finally, several versions of the two-way channel assignment problem are studied  相似文献   

16.
In this letter, we analyzed and compared the performance of dynamic resource allocation with/without channel de-allocation in GSM/GPRS networks. It is quite known that dynamic resource allocation allows communication systems to utilize their resources more efficiently than the traditional fixed allocation schemes. In GPRS, multiple channels may be allocated to a user to increase the transmission rate. In the case when there are no free channels in the system, some of these channels may be de-allocated to serve higher priority calls. The results show that with channel de-allocation mechanism, the voice blocking probability can be greatly reduced, especially at high GPRS traffic load. Besides, the scheme with channel de-allocation mechanism can achieve higher channel utilization.  相似文献   

17.
The foreseen mass diffusion of mobile communication services will require the identification of suitable resource management strategies to utilize efficiently the available spectrum. This paper refers to highmobility cellular systems and carries out a performance evaluation for different channel assignment techniques that belong to the following classes: Fixed Channel Allocation (FCA), or Dynamic Channel Allocation (DCA). Suitable handoff prioritization techniques have been considered to obtain a high quality of service; in particular, the queueing of handoff requests and the use of guard channels have been investigated. The resource management techniques have been compared in terms of the following parameters: the call blocking probability, the call dropping probability, the probability of unsuccessful call and the average number of channel rearrangements per call. The joint use of DCA, guard channels, queueing of handoff requests and channel rearrangements has shown promising results for the management of both new call attempts and handoff requests.  相似文献   

18.
As an effective technique for combating multipath fading and for high-bit-rate transmission over wireless channels, orthogonal frequency-division multiplexing (OFDM) is extensively used in modern terrestrial digital television broadcasting systems to support high performance bandwidth-efficient multimedia services. Cutoff rate and outage probability are two important criteria to evaluate the performance of a practical communication system in radio engineering. In this paper, the cutoff rate and outage probability performance are compared between two important terrestrial digital television broadcasting systems, the cyclic prefix OFDM based DVB-T system and the time domain synchronous OFDM based DMB-T system, under different mobile multipath channel conditions. The DVB-T system and the DMB-T system are summarily introduced. The cutoff rate and outage probability expressions are developed, and simulation results are given for both the DVB-T system and the DMB-T system.  相似文献   

19.
QoS Handover Management in LEO/MEO Satellite Systems   总被引:4,自引:0,他引:4  
Low Earth Orbit (LEO) satellite networks are foreseen to complement terrestrial networks in future global mobile networks. Although space segment topology of a LEO network is characterized by periodic variations, connections of mobile stations (MSs) to the satellite backbone network alter stochastically. As a result the quality of service delivered to users may degrade. Different procedures have been proposed either as part of a resource allocation mechanism or as part of an end-to-end routing protocol to manage transitions of MSs from one satellite to another (handover). All of these techniques are based on the prioritization of requested handovers to ease network operation and therefore enhance provision of service. This paper proposes a new handover procedure that exploits all geometric characteristics of a satellite-to-MS connection to provide an equable handover in systems incorporating onboard processing satellites. Its performance is evaluated by simulations for a variety of satellite constellations to prove its general applicability. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Using a model from the literature, the performance of convolutionally interleaved phase-shift-keying (PSK) and differential phase-shift-keying (DPSK) trellis codes for digital speech transmission over shadowed mobile satellite communication channels is determined by computer simulation. First the characteristics of fading channels are examined and analyzed in terms of the probability distributions of amplitude, phase, and burst errors. A statistical method, using a histogram approach, is utilized along with the simulations of fading channels to generate these probability distributions. A test for channel burst error behavior is presented. A periodic convolutional interleaver/deinterleaver to be used with trellis coding to combat slow fading in digital, shadowed mobile satellite channels is designed. This interleaver ha less than half the time delay for the same bit error performance than a block interleaver. The results show that the periodic convolutional interleaver provides considerable improvement in the error and time delay performance of mobile satellite communication channels for up to average shadowing conditions as compared to other techniques  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号