首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We demonstrate a methodology to account for rain effects on wall heat gain using the DOE-2 building energy estimation software as a reference. The methodology involves modifying the boundary conditions used for estimating heat flow through exterior wall components. Information on boundary conditions during rain is obtained from a classification of rain patterns from local weather data. The DOE-2 computer code, with the appropriate modifications, is calibrated with experimental results obtained for both dry and wet outdoor conditions. Finally, the calibrated code is used to estimate the reduction in heat gain due to rain by a porous building wall for different rain patterns. The annual heat gain reduction is also estimated for a typical tropical climate. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
《Energy》2005,30(10):1817-1831
Daylighting is an important issue in modern architecture that has been characterized by the use of curtain walls in commercial buildings. In Hong Kong, the overall thermal transfer value (OTTV) calculations are mandatory requirements in the submission of building plans to control the building energy use, but daylighting credits are not included in calculating the OTTV of building envelope designs. Natural daylight helps reduce the electricity use and the associated sensible cooling load due to artificial lighting. Hence, proper daylighting designs can contribute to smaller air-conditioning system and lower the peak power demand of buildings. We use the computer simulation tool, DOE-2, to demonstrate the energy performance of a generic commercial building with different OTTV designs in terms of peak cooling plant requirement and peak building power demand due to various daylighting systems. The peak loads are determined from the simulation results. Regression techniques are conducted to correlate the incremental peak electricity use and incremental peak cooling capacity with OTTV and daylighting aperture (DA) (window-to-wall ratio (WWR) times light transmittance (LT)). Contours of equal incremental peak electricity use and incremental peak cooling plant demand for different building envelope parameters are developed. Important features for daylighting schemes are highlighted and implications for OTTV designs discussed.  相似文献   

3.
《Energy》2002,27(11):991-1008
The overall thermal transfer value (OTTV) and daylighting are two approaches controlling building energy use. In Hong Kong, although OTTV calculations are mandatory in the submission of building plans for approval, daylighting credits are not included in building envelope designs. To promote energy-efficient building designs we use the computer simulation tool, DOE-2, to illustrate the energy performance of a generic commercial building due to various daylighting schemes and OTTV designs. The year-round energy expenditures and loads are determined from the simulation results. Analysis is carried out in terms of the reduction in electric lighting requirement and the cooling penalty due to solar heat. Regression techniques are conducted to correlate the annual incremental electricity use with OTTV and daylighting aperture (DA) (product of window-to-wall ratio (WWR) and light transmittance (LT)). Contours of equal annual incremental electricity use for different building envelope parameters are developed. Important features for daylighting schemes are highlighted and implications for OTTV designs are discussed.  相似文献   

4.
We present a methodology for determining the transient heat flow through building walls. The methodology involves the use of a guarded hot box operating under a set of simulated conditions representative of actual weather patterns. Results validate the use of the guarded hot box for the measurement of heat flow through building constructions operating under different characteristic weather patterns. Outdoor heat flow measurements are made using an isothermal-heat-flux measuring plate and the same outdoor air temperature and solar radiation effects are simulated in a guarded hot box using the sol-air temperature. Finally, these heat flow values are compared with predictions made using the DOE-2 computer code. This comparison provides a means for validating computer predicted heat flows through building walls.  相似文献   

5.
Overall thermal transfer values for building envelopes in Hong Kong   总被引:2,自引:0,他引:2  
The Overall Thermal Transfer Values (OTTVs) of building envelopes in Hong Kong have been considered. Parametric studies on a centrally air-conditioned building were performed. The DOE-2 program, developed at the US Department of Energy, has been used as the energy behaviour simulation tool. The year 1980 is taken as the reference weather year for Hong Kong. The window-to-wall ratio as well as the orientation of the windows for the example building were varied. Two values of OTTV, one for summer and the other for winter, have been established for accounting for seasonal changes in Hong Kong. The summer OTTV, calculated from the heat gain in the hot season, is recommended as the more important value for evaluating the thermal performance of building envelopes in Hong Kong.  相似文献   

6.
We present a methodology for developing a set of cooling load and energy estimating equations for large commercial buildings. The methodology is developed from parametric simulations on the DOE-2 computer code for any given generic building type and annual weather data file of the location. The equations estimate the annual cooling energy use of a building, its peak cooling load and the sensible cooling load. Correlations are obtained using the concept of the overall thermal transfer value of building envelopes and the number of cooling degree-days in a year. Other key variables include space internal loads, design outdoor-indoor temperature difference, and the global efficiency of chiller plants. The set of simple equations are validated using results obtained from DOE-2 simulations of audited actual buildings. © 1997 by John Wiley & Sons, Ltd.  相似文献   

7.
The energy performances of 20 commercial buildings, covering the common types found in Hong Kong, have been studied. The monthly electricity billing data as well as the results from computer modeling were analyzed. Energy signatures for the commercial buildings were found by a method similar to PRISM. Correlation equations of energy use with building envelope parameters, such as OTTV, building size, envelope heat gain, and the annual chiller-load were derived. The results are useful for building envelope design, energy audit, and legislative control of energy use in commercial buildings.  相似文献   

8.
《Energy》2005,30(7):933-951
We present the energy use situation in Hong Kong from 1979 to 2001. The primary energy requirement (PER) nearly tripled during the 23-year period, rising from 195,405 TJ to 572,684 TJ. Most of the PER was used for electricity generation, and the electricity use in residential buildings rose from 7556 TJ (2099 GWh) to 32,799 TJ (9111 GWh), an increase of 334%. Air-conditioning accounted for about 40% of the total residential sector electricity consumption. A total of 144 buildings completed in the month of June during 1992–2001 were surveyed. Energy performance of the building envelopes was investigated in terms of the overall thermal transfer value (OTTV). To develop the appropriated parameters used in OTTV calculation, long-term measured weather data such as ambient temperature (1960–2001), horizontal global solar radiation (1992–2001) and global solar radiation on vertical surfaces (1996–2001) were examined. The OTTV found varied from 27 to 44 W/m2 with a mean value of 37.7  W/m2. Building energy simulation technique using DOE-2.1E was employed to determine the cooling requirements and hence electricity use for building envelope designs with different OTTVs. It was found that cooling loads and electricity use could be expressed in terms of a simple two-parameter linear regression equation involving OTTV.  相似文献   

9.
We describe the development of a methodology for predicting the effects of multi-parameter changes on the energy use of large buildings. The methodology is based on the third-order Taylor series expansion whose coefficients are evaluated for several key building parameters. The building was coded for energy performance simulation by the DOE-2 computer program. A database of simulation results was created from which the coefficients of the Taylor series expansion were derived. Test results using this energy predicting methodology provided reasonably accurate estimates of the total and cooling energy of a generic building in Singapore.  相似文献   

10.
This paper presents a time-dependent periodic heat transfer analysis of a non-air-conditioned building having a south-facing wall of phase-changing component material (PCCM). A rectangular room (6 × 5 × 4 m) based on the ground is considered. The effects of heat transfer through walls and roof, heat conduction to the basement ground and furnishings, heat gain through window and heat loss due to air ventilation have been incorporated in the periodic time-dependent heat transfer analysis. The time-dependent heat flux through the PCCM south-facing wall has been obtained by defining the effective thermal properties of the PCCM for a conduction process with no phase change. Numerical calculations are made for a typical mild winter day (7 March 1979) at New Delhi for heat flux entering through the wall and inside air temperature. Further, a PCCM wall of smaller thickness is more desirable, in comparison to an ordinary masonry concrete wall, for providing efficient thermal energy storage as well as excellent thermal comfort in buildings.  相似文献   

11.
《Energy》2005,30(1):41-71
This paper inquires into whether overall thermal transfer value (OTTV) is an appropriate building envelope energy performance index for use in regulatory control. First, a historical review of the use of OTTV in American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE) Standard 90 is presented, followed by a review of more recent work on its further development and application. The major deficiencies of OTTV are then discussed, and simulation study results meant to highlight the impacts of such deficiencies are presented. The study embraced air-conditioned office buildings and air-conditioned high-rise residential buildings in Hong Kong. Results of this study clearly show that the OTTV calculated with the use of pre-calculated coefficients may not truly reflect the thermal performance of a building envelope. Therefore, a second thought should be given to the use of OTTV in building energy codes.  相似文献   

12.
This study deals with comparison of experimental and theoretical results of transient temperature variations in multilayered building walls and flat roofs, and heat flow through the building structures. Experimental and theoretical models are presented to find the transient temperature variations in these structures and heat flow through these elements, which depends on inside surface and room air temperatures. Instantaneous inside and outside air temperatures, and surface temperatures of each wall and roof layers are measured by using the experimental model consisted of two rooms, cooling units, measuring devices and computers. A computer program based on the theoretical model is developed to perform numerical calculations. Hourly temperature variations of the nodal points are computed numerically over a period of 24 h by using the hourly measured ambient air temperatures and solar radiation flux on a horizontal surface for the city of Gaziantep (37.1°N), Turkey, and also by using thermophysical properties of the structures. Results obtained from the experimental and theoretical models are compared with each other, and validation of the theoretical model is verified in this paper. Computations for various multilayer building walls of briquette, brick, blokbims, and autoclaved aerated concrete (AAC), which are commonly used in Turkey are repeated for finding heat gain through these structures, and results are compared to determine suitable wall material. It is observed that AAC and blokbims are more suitable wall materials than briquette and brick due to heat flow through these elements.  相似文献   

13.
The aim of this study is to find time lag (TL), decrement factor (DF) and total equivalent temperature difference (TETD) values for multilayer walls and flat roofs of buildings using experimental and theoretical methods, and to compare the experimental results with theoretical ones. The TETD is a method for calculating cooling load due to heat gain from the walls or flat roofs, and it can be obtained using values of inside and outside air temperatures, solar radiation, TL and DF. The TL and DF depend on the highest and the lowest temperatures at the inner and outer surfaces of the walls or flat roofs, and the time periods involved in reaching these temperatures. Hence, two testing rooms each consisting of four multilayered walls and a flat roof, air conditioner, measuring elements are built to measure all required temperatures. The required temperatures, which are hourly inside and outside air temperatures, and surface temperatures of each structure layer, are measured in every minute during testing periods of the 2007 summer season of Gaziantep, Turkey. Hourly solar radiation values on the walls are computed using hourly measured solar radiation on a horizontal surface. The TL, DF and TETD values of eight different walls and two different flat roofs commonly used in Turkey are computed utilizing the measured temperature and solar radiation values. The computed values for the TL, DF and TETD are compared with theoretical results obtained numerically using periodic solution of one dimensional transient heat transfer problem for the same structures.  相似文献   

14.
Energy performance of office building envelope designs in the five major climate zones – severe cold, cold, hot summer and cold winter, mild, and hot summer and warm winter – in China was investigated. A major city within each climate zone was selected. These were Harbin, Beijing, Shanghai, Kunming and Hong Kong. Generic building envelopes were developed based on data gathered from building surveys, local energy codes and the ASHRAE Standard. The overall thermal transfer value (OTTV) method and the heating degree-days technique were adopted in the analysis. Cooling and heating requirements due to heat gain/loss through the building envelopes were determined based on the respective OTTV parameters and building load coefficients. Different shape coefficients were also considered. For a typical floor, chiller load due to heat gain through the building envelope varied from 1.0 kW h/m2 in Kunming to 23.5 kW h/m2 in Beijing, and the heating load ranged from 2.7 kW h/m2 in Hong Kong to 124.3 kW h/m2 in Harbin.  相似文献   

15.
We present the methodology used in developing an equation for estimating the cooling energy consumption of large commercial buildings. The equation was developed from a database of results generated from computer simulations using the DOE-2 program. Factors accounted for by the equation include: part-load performance of equipment, the number of cooling-degree days, diversity of building operation, and the overall thermal transfer value of the building envelope. Also, the equation has been generalized to take into account the oversizing of the chiller from 110% to 160% of the design capacity. Parametric analyses using single- and multiple-parameter variations validated the accuracy of the equation.  相似文献   

16.
This paper presents an investigation of the thermal behaviour of a non-airconditioned building with walls/roof being exposed to periodic solar radiation and atmospheric air while the inside air temperature is controlled by an isothermal mass, window and door in the walls of the room. The effects of air ventilation and infiltration, the heat capacities of the isothermal storage mass inside air and walls/roof, heat loss into the ground, and the presence/absence of the window/door have been incorporated in the realistic time dependent periodic heat transfer analysis to evaluate the overall heat flux coming into the room and the inside air temperature. A numerical computer model using typical weather data for Delhi has been made to appreciate the analytical results quantitatively. It is found that the heat fluxes through different walls have different magnitudes and phase lags w.r.t. the corresponding solair temperatures. The overall heat flux coming into the room as well as the room air temperature are sensitive functions of the number of air changes per hour, closing/opening of the window and the door ventilation. The effects of the heat capacity of the isothermal mass and the basement ground are found to reduce the inside air temperature swing and the presence of a window is found to increase the inside air temperature even when the window area is much smaller than the wall/roof area. The model presented would be an aid to a building architect for good thermal design of non-airconditioned buildings.  相似文献   

17.
A numerical procedure for the calculation of the transient indoor temperature in buildings is developed. The procedure is based on an implicit finite-difference solution of a closed set of differential equations, which express the indoor energy balance and the transient heat conduction in all elements of the building envelope. Using the above procedure, calculations are carried out for 21 types of buildings with 18 and 10 different kinds of wall and roof constructions, respectively, i.e. the total number of building cases examined is 21 × 18 × 10 = 3780 with floor areas ranging from 30 m2 to 300 m2. It is found that buildings of different construction characteristics and sizes but with the same time constant, respond in a similar way under the same outdoor temperature variation. Based on this similarity, a correlation is developed which expresses, under periodic conditions, the indoor temperature variation in terms of the building time constant and the outdoor temperature characteristics. The correlation contains nine coefficients, the values of which are different for different ranges of the building time constant.  相似文献   

18.
《Applied Thermal Engineering》2000,20(13):1193-1211
A procedure is presented for analyzing the effective thermal capacitance, the time constant and the thermal delay of buildings into components corresponding to discrete sections of the envelope (i.e. the roof or a whole wall of a specified orientation), to envelope parts of different compositions (i.e. the brickwork and the concrete parts of the envelope), or even to the layers of the exterior multilayer walls. Correlations are also developed, which express the dynamic thermal parameters of buildings in terms of the thickness of exterior wall layers and the surface percentage of envelope parts with different compositions. The effective layer thickness is introduced, the increase of which causes negligible increase in the building thermal capacitance. The developed procedure is based on finite-difference solution of a rigorous set of coupled differential equations describing the dynamic thermal behaviour of buildings. The analysis made quantifies the thermal contribution of every element of the envelope and may improve its thermal behaviour if the related conclusions are taken into consideration in the design of buildings.  相似文献   

19.
Yan Quanying  Huo Ran  Li Lisha 《Solar Energy》2012,86(10):3099-3102
The thermal properties of the shape-stabilized phase change material walls with different structure were studied. The phase change material is composed of paraffin mixture and high-density polyethylene. The walls including concrete and shape-stabilized phase change material were prepared respectively by different methods. Preparation methods include direct mixing method and lamination interpolation method. Heat transfer process in the shape-stabilized PCM walls was studied by comparing with traditional wall. The results showed that the surface temperature and the heat flow through the phase change material walls prepared by different methods are lower than that of traditional wall and the change is small. Energy-saving effect of the shape-stabilized PCM walls prepared by lamination interpolation method is better than that of the shape stabilized PCM walls by direct mixing. Results in this paper can provide the basis for the application of the shape stabilized PCM walls in the buildings.  相似文献   

20.
The following research has been undertaken as a response to the recent controversy regarding the suitability of rammed earth wall construction as an effective building envelope in regard to its thermal performance. The R-value for rammed earth walls is low hence they might be expected to conduct heat into a building during summer. However the large mass of these walls and the associated thermal lag in heat transfer from outside to inside may result in the walls performing satisfactorily in a building which is only occupied during working hours. Internal rammed earth walls may act as moderators of large diurnal temperature swings helping to produce an even comfortable temperature within a building. Empirical (in situ) measurements of temperature and heat flux were taken on the walls of an existing rammed earth office building in New South Wales, Australia during the summer. An analysis was performed which established a methodology to measure the heat flow associated with the walls, floor, ceiling, windows and infiltration for one office during occupied hours and the net energy transferred between the office and these elements was established. During this time the earth walls performed well. External walls were found to transmit comparatively little heat to the office and the internal walls absorbed heat during this time. Diffuse sky radiation transmitted by the window and infiltration are both likely to be important factors in the summer heat load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号