首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article, robust least-squares filtering problems are considered for non-parametric multivariate spectral uncertainty defined by the so-called spectral band and generalised-moment constraints. Its major aim is to provide a basis for computing approximate solutions to worst-case, Wiener-filtering optimisation problems involving causal filters and multivariate signals. It hinges upon associating upper and lower bounds on the minimum worst-case performance achievable with causal filters with linear-cost/linear matrix inequality (LC/LMI)-constraint optimisation problems. On the basis of a Lagrangean duality formulation for the worst-case, least-squares performance of a given filter, upper bounds on it are obtained as the optimal values of LC/LMI problems. Then, for linearly parameterised classes of filter transfer functions, a causal filter which optimises such an upper bound on worst-case performance can also be obtained from an LC/LMI optimisation problem. To estimate the amount of conservatism incurred when relying on such upper bounds, optimal, nominal, least-squares performance for a given pair of power spectral densities (for the information and noise signal) is maximised over finite-dimensional, linearly parameterised classes of the latter. Again, such problems are shown to be equivalent to LC/LMI problems and the corresponding optimal values are lower bounds on the minimum worst-case, least-squares error achievable in the original robust filtering problem (say, μ*). Finally, two simple numerical examples are presented to illustrate how causal filters can be obtained whose worst-case, least-squares performance is quite close to the optimal one (i.e. μ*).  相似文献   

2.
New stochastic γ0 and mixed H0 filtering and control problems for discrete-time systems under completely unknown covariances are introduced and solved. The performance measure γ0 is the worst-case steady-state averaged variance of the error signal in response to the stationary Gaussian white zero-mean disturbance with unknown covariance and identity variance. The performance measure H0 is the worst-case power norm of the error signal in response to two input disturbances in different channels, one of which is the deterministic signal with a bounded energy and the other is the stationary Gaussian white zero-mean signal with a bounded variance provided the weighting sum of disturbance powers equals one. In this framework, it is possible to consider at the same time both deterministic and stochastic disturbances highlighting their mutual effects. Our main results provide the complete characterisations of the above performance measures in terms of linear matrix inequalities and therefore both the γ0 and H0 optimal filters and controllers can be computed by convex programming. H0 optimal solution is shown to be actually a trade-off between optimal solutions to the H and γ0 problems for the corresponding channels.  相似文献   

3.
Aiming at the constrained polytopic uncertain system with energy‐bounded disturbance and unmeasurable states, a novel synthesis scheme to design the output feedback robust model predictive control(MPC)is put forward by using mixed H2/H design approach. The proposed scheme involves an offline design of a robust state observer using linear matrix inequalities(LMIs)and an online output feedback robust MPC algorithm using the estimated states in which the desired mixed objective robust output feedback controllers are cast into efficiently tractable LMI‐based convex optimization problems. In addition, the closed‐loop stability and the recursive feasibility of the proposed robust MPC are guaranteed through an appropriate reformulation of the estimation error bound (EEB). A numerical example subject to input constraints illustrates the effectiveness of the proposed controller.  相似文献   

4.
In this note, an iterative procedure is presented for obtaining a decreasing sequence of upper bounds on the worst-case H 2 performance of a given stabilizing controller in the presence of normalized coprime-factor perturbations. To obtain such bounds, a descent procedure is introduced for a dual Lagrangean functional which gives upper bounds on the worst-case H 2 performance index and is defined on the set of real-rational and non-negative functions (dynamic multipliers). Specific ways are presented for selecting feasible and descent directions in this set and lower bounds are derived for the corresponding decreases on the dual functional. At any step, the dynamics of the current multiplier gives rise to a linear class over which the optimization of the dual functional is shown to be equivalent to linear optimization subject to linear matrix inequalities (LMI). This allows for a combination of function space and LMI techniques in the process of obtaining increasingly tighter upper bounds on worst-case H 2 performance, as illustrated in a numerical example.  相似文献   

5.
This paper focuses on the H model reduction problem of positive fractional order systems. For a stable positive fractional order system, we aim to construct a positive reduced‐order fractional system such that the associated error system is stable with a prescribed H performance. Then, based on the bounded real lemma for fractional order systems, a sufficient condition is given to characterize the model reduction problem with a prescribed H‐norm error bound in terms of a linear matrix inequality (LMI). Furthermore, by introducing a new flexible real matrix variable, the desired reduced‐order system matrices are decoupled with the complex matrix variable and further parameterized by the new matrix variable. A corresponding iterative LMI algorithm is also proposed. Finally, several illustrative examples are given to show the effectiveness of the proposed algorithms.  相似文献   

6.
In this paper, an event-triggering scheme is implemented in uncertain switched linear systems with time-varying delays and exogenous disturbance. Instead of standard periodically time-triggered, sampled-data control systems, the event-triggered control systems sample data only when an event, typically defined as some performance error exceeding a tolerant bound, occurs. Specifically, considering the disturbance existing in the system, the event-triggered robust H control problem is studied. In order to guarantee the robust H performance, the event-triggered full state feedback control, multiple Lyapunov functions method and state-dependent switching law are utilised to construct sufficient conditions in terms of linear matrix inequalities. In particular, since the event-triggered signals and switching signals may interlace with each other, the influence from them on the analysis of robust H performance is clarified. Subsequently, sufficient design conditions of the sub-controllers’ gains are further presented. Moreover, the Zeno problem is discussed to exclude continuously triggering and sampling. Finally, numerical simulations are provided to verify the feasibility of the proposed approach.  相似文献   

7.
In this paper, we consider a minimax approach to the estimation and filtering problems in the stochastic framework, where covariances of the random factors are completely unknown. The term ‘random factors’ refers either to unknown parameters and measurement noise in the estimation problem or to disturbance process and the initial state of a linear discrete-time dynamic system in the filtering problem. We introduce a notion of the attenuation level of random factors as a performance measure for both a linear unbiased estimate and a filter. This is the worst-case variance of the estimation error normalised by the sum of variances of all random factors over all nonzero covariance matrices. It is shown that this performance measure is equal to the spectral norm of the ‘transfer matrix’ and therefore the minimax estimate and filter can be computed in terms of linear matrix inequalities (LMIs). Moreover, the explicit formulae for both the minimax estimate and the minimal value of the attenuation level are presented in the estimation problem. It turns out that the above attenuation level of random factors coincides with the attenuation level of deterministic factors that is the worst-case normalised squared Euclidian norm of the estimation error over all nonzero sample values of random factors. In addition, we demonstrate that the LMI technique can be applied to derive the optimal robust estimator and filter, when there is a priori information about convex polyhedral sets which unknown covariance matrices of random factors belong to. Two illustrative examples show advantages of the minimax approach proposed.  相似文献   

8.
This paper considers linear time invariant systems with sector type nonlinearities and proposes regional ??2 performance analysis and synthesis methods based on the circle criterion. In particular, we consider the effect of non‐zero initial states and/or an ??2 disturbance inputs on the ??2 norm of a selected performance output. We show that both analysis and synthesis problems can be recast as linear matrix inequality (LMI) optimization problems, where, for synthesis, the outputs of the nonlinear elements are assumed available for control. Moreover, it is shown when the circle criterion does or does not help to improve the performance bound in robust control synthesis when compared with the existing linear analysis method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Motivated by a robust disturbance rejection problem, in which disturbances are described by an uncertain filter at the plant input, a convex solution is presented for the robust output feedback controller synthesis problem for a particularly structured plant. The uncertainties are characterized by an integral quadratic constraint (IQC) with general frequency‐dependent multipliers. By exploiting the structure of the generalized plant, linear matrix inequality (LMI)‐synthesis conditions are derived in order to guarantee a specified ??2‐gain or ??2‐norm performance level, provided that the IQC multipliers are described by LMI constraints. Moreover, it is shown that part of the controller variables can be eliminated. Finally, the rejection of non‐stationary sinusoidal disturbance signals is considered. In a numerical example, it is shown that specifying a bound on the rate‐of‐variation of the time‐varying frequency can improve the performance if compared with the static IQC multipliers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A kind of H non‐fragile synchronization guaranteed control method is put forward for a class of uncertain time‐varying delay complex network systems with disturbance input. The network under consideration includes unknown but bounded nonlinear coupling functions f(x) and the coupling term and node system with time‐varying delays. The nonlinear vector function f(x) need not be differentiable but should satisfy the norm bound. A non‐fragile state feedback controller of the gain with sufficiently large regulation margin is designed. It is ensured that the parameters of the controller could still be effective under small perturbation. The sufficient conditions for the existence of H synchronous non‐fragile guaranteed control of this system have been obtained by constructing a suitable Lyapunov‐Krasovskii functional, adopting matrix analysis, using the theorem of Schur complement and linear matrix inequalities (LMI). These conditions can guarantee robust asymptotic stability for each node of network with disturbance as well as achieve a prescribed robust H performance level. Finally, the feasibility of the designed method is verified by a numerical example.  相似文献   

11.
A new approach for the design of robust H observers for a class of Lipschitz nonlinear systems with time‐varying uncertainties is proposed based on linear matrix inequalities (LMIs). The admissible Lipschitz constant of the system and the disturbance attenuation level are maximized simultaneously through convex multiobjective optimization. The resulting H observer guarantees asymptotic stability of the estimation error dynamics and is robust against nonlinear additive uncertainty and time‐varying parametric uncertainties. Explicit norm‐wise and element‐wise bounds on the tolerable nonlinear uncertainty are derived. Also, a new method for the robust output feedback stabilization with H performance for a class of uncertain nonlinear systems is proposed. Our solution is based on a noniterative LMI optimization and is less restrictive than the existing solutions. The bounds on the nonlinear uncertainty and multiobjective optimization obtained for the observer are also applicable to the proposed static output feedback stabilizing controller. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
In this article, the worst-case norm of the regulated output over all exogenous signals and initial states as a performance measure of the system is characterised in terms of linear matrix inequalities (LMIs). Optimal time-invariant state- and output-feedback controllers are synthesised as minimising this performance measure. The essential role in this synthesis plays a weighting matrix reflecting the relative importance of the uncertainty in the initial state contrary to the uncertainty in the exogenous signal. H -optimal control with transients is shown to be actually a trade-off between H -control, being optimal under unknown exogenous disturbances and zero initial state, and γ-control, being optimal under zero exogenous signal and unknown initial conditions, if and only if the weighting matrix satisfies a fundamental inequality. If this inequality is met, the performance measure is achieved and the explicit formulae for the worst-case disturbance and initial state are provided. If this inequality fails, the performance measure coincides with the H -norm and the trade-off gets broken.  相似文献   

13.
This paper addresses the problem of robust H control for uncertain continuous singular systems with state delay. The singular system under consideration involves state time delay and time‐invariant norm‐bounded uncertainty. Based on the linear matrix inequality (LMI) approach, we design a memoryless state feedback controller law, which guarantees that, for all admissible uncertainties, the resulting closed‐loop system is not only regular, impulse free and stable, but also meets an H‐norm bound constraint on disturbance attenuation. A numerical example is provided to demonstrate the applicability of the proposed method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, the robust delay‐dependent H control for a class of uncertain systems with time‐varying delay is considered. An improved state feedback H control is proposed to minimize the H‐norm bound via the LMI optimization approach. Based on the proposed result, delay‐dependent criteria are obtained without using the model transformation technique or bounded inequalities on cross product terms. The linear matrix inequality (LMI) optimization approach is used to design the robust H state feedback control. Some numerical examples are given to illustrate the effectiveness of the approach.  相似文献   

15.
In this paper, a robust H model predictive control (MPC) technique is proposed for time-varying uncertain discrete-time systems in the presence of input constraints and disturbances. We formulate a minimization problem of the upper bound of finite horizon cost function subject to the terminal inequality for an induced l 2-norm bound. In order to improve system performance, we propose an LMI condition for the terminal inequality by using relaxation matrices. The LMI condition guarantees induced l 2-norm bounds of the system despite system uncertainty and disturbance. A numerical example shows the effectiveness of the proposed method.  相似文献   

16.
The problem of adaptive robust H control for uncertain systems with multiple delays is considered in this paper. The essential requirement for the uncertainties is that they satisfy matching conditions and are norm-bounded, but the bounds are not necessarily known. The objective is to design adaptive robust H state-feedback controller such that the resulting closed-loop system is asymptotically stable and a prescribed H performance level of the closed loop system for disturbance attenuation is guaranteed. To solve this problem, a new sufficient condition is presented in terms of a linear matrix inequality (LMI). The effectiveness of proposed method is verified by its application to an unstable system.  相似文献   

17.
To reduce the adverse effects on the control performance and disturbance rejection caused by system uncertainty, a novel internal model based robust inversion feedforward and feedback 2DOF control approach was proposed for LPV system with disturbance. The proposed control approach combines the internal model control and robust inversion based 2DOF control, it utilizes internal model based control to reject external disturbance, utilizes robust inversion 2DOF control to enhance the control resolution and guarantee the system control performance. At first, a LMI synthesis approach for LPV system model identification and a disturbance compensator optimization design method which could minimize H norm of output error caused by disturbance are presented. Then, combined with internal loop for disturbance compensation, a robust inversion feedforward controller is designed by robust inversion approach and the feedback controller which could render the requirements of reference signal tracking performance and robustness satisfied is obtained by the H mixed sensitivity synthesis approach. Finally, atomic force microscopy (AFM) vertical positioning simulation experiments are conducted and the experiment results showed that the proposed control approach could achieve better output performance and disturbance rejection compared with conventional internal model based control and robust inversion based 2DOF control approach.  相似文献   

18.
A delay-dependent approach to robust H filtering is proposed for discrete-time singular systems with multiple time-varying delays and polytopic uncertainties. The delays are interval time-varying delays and uncertainties are a convex compact set of polytopic types. The aim of the designed filter is to guarantee regular, causal, asymptotic stability with H norm bound of filtering error singular systems. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent bounded lemma (BL) for singular systems with interval time-varying delays is proposed. Based on the result, the existence condition of the robust H filter and the filter design method are presented in terms of linear matrix inequality (LMI). Finally, two examples are also given to illustrate the effectiveness of the proposed methodology.  相似文献   

19.
Applying dither to highly nonlinear systems may suppress chaotic phenomena, but dynamic performance, such as convergence rate and disturbance attenuation, is usually not guaranteed. This paper presents a dithered H robust fuzzy control scheme to stabilize chaotic systems that ensures disturbance attenuation bounds. In the proposed scheme, Takagi-Sugeno (T-S) fuzzy linear models are used to describe the relaxed models of the dithered chaotic system, and fuzzy controllers are designed based on an extension to the concept of parallel distributed compensation (PDC). Sufficient condition for the existence of the H robust fuzzy controllers is presented in terms of a novel linear matrix inequalities (LMI) form which takes full consideration of modeling error and disturbances, but cannot be solved by the standard procedures. In order to solve the LMI problem and to identify the chaotic systems as T-S fuzzy modes, we propose a compound optimization strategy called the island-based random-walk algorithm (IRA). The algorithm is composed of a set of communicating random-walk optimization procedures concatenated with the down-hill simplex method. The design procedure and validity of the proposed scheme is demonstrated via numerical simulation of the dithered fuzzy control of a chaotic system.  相似文献   

20.
This paper studies the problem of robust fault estimation for neutral systems, which are subjected to uncertainties, actuator fault, time‐varying interval delay, and norm‐bounded external disturbance. Based on the fast adaptive fault estimation (FAFE) algorithm, we focus on the design of a fault estimation filter that guarantees stability in the filtering error system with a prescribed H performance. A novel Lyapunov‐Krasovskii functional is employed, which includes time delay information. A delay‐dependent criterion of robust fault estimation design is obtained by employing the free‐weighting matrices technique, and the proposed result has advantages over some existing results, in that it is less conservative and it enlarges the application scope. An improved sufficient condition for the existence of such a filter is proposed in terms of the linear matrix inequality (LMI) by the Schur complements and the cone complementary linearization algorithm. Finally, illustrative examples are provided to show the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号