首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate evaluation of the wind convection heat transfer coefficient (hw) for solar-based systems is essential, especially for solar desalination systems. Thermal behavior and productivity of solar stills are highly affected by the external heat loss through the glass cover. This paper describes a new experimental approach to estimate the hw on the glass cover of the conventional single-slope solar distiller (CSS). Indoor experiments have been conducted under steady-state conditions for a wind speed between 0 and 3 m/s. The hw has been evaluated through an energy balance performed on the distiller's glass cover. The results showed that increasing the wind speed increases the hw (from 5.64 to 31.57 W/m2 K) and enhances the distillation rate (from 5.28 to 7.61 mL/min). A new relationship for the hw was proposed for the CSS and compared with the experimental data available in the literature. The comparison shows that the obtained results are close to the data from solar systems, with a deviation ranging from 27.4% to 37%. However, a significant deviation was obtained with earlier models derived from flat plates (from 29.5% to 59%).  相似文献   

2.
In this paper, thermal models of all types of solar collector‐integrated active solar stills are developed based on basic energy balance equations in terms of inner and outer glass temperatures. In this paper, hourly yield, hourly exergy efficiency, and hourly overall thermal efficiency of active solar stills are evaluated for 0.05 m water depth. All numerical computations had been performed for a typical day in the month of 07 December 2005 for the climatic conditions of New Delhi (28°35′N, 77°12′E, 216 m above MSL). The thermal model of flat‐plate collector integrated with active solar still was validated using the experimental test set‐up results. Total daily yield from active solar still integrated with evacuated tube collector with heat pipe is 4.24 kg m?2 day?1, maximum among all other types of active solar stills. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Effect of inclination on the performance of CPC solar energy collectors   总被引:1,自引:0,他引:1  
A theoretical numerical model of thermal transfer in a line-axis, symmetric, compound parabolic concentrating solar energy collector (CPC) is presented. The effect of the angle of axial inclination of an east-west aligned CPC and hence the effect of the latitudinal and tracking configuration of the CPC system on performance is investigated. The angle of inclination is taken into consideration in the determination of both internal and external convective heat transfer. The convective, radiative, conductive and overall heat transfer coefficients and system efficiency for various angles of inclination, concentration ratios and insolations was determined, and are presented as graphs of heat transfer variation and Hottel-Whillier-Bliss characteristic curves respectively.  相似文献   

4.
This study aims to improve the performances of a solar still single slope using metal oxide nanofluid (Al2O3–water, Cu2O–water, and TiO2–water). The numerical study was carried out for the climatic conditions of Agadir, Morocco, with different concentrations of nanofluids inside a basin equipped with an absorber plate with two different absorptivities. The numerical study is based on thermal balance equations applied on different solar system components and solved using the Runge Kutta method. The numerical model is validated by comparing our results with the literature available data. A comparison study of the effect of these nanofluids on solar still productivity is done. The results show that the productivity of the solar still using nanoparticles Cu2O, TiO2, and Al2O3 are 7.38, 7.1, and 7.064 kg m−2 day−1, respectively. It is obtained that the maximum efficiency of the solar still is found to be 55.27% by using cuprous oxide nanoparticles. Furthermore, an enhancement in solar still productivity of 6.36%, 19.54%, and 33.25% is obtained by dispersing 1%, 3%, and 5% volume fraction of Cu2O nanoparticles in pure water, respectively compared to the conventional solar. Moreover, the impact of the absorptivity of the absorber plate on the solar still effectiveness is investigated. Two types of coatings are considered to change the absorber plate absorptivity. The results indicate that the efficiencies of the solar system are 58.81% and 51.77% using an absorber plate with 0.95 and 0.85 of absorptivity, respectively.  相似文献   

5.
Throught this work, a theoritical and experimental study of a small solar still of a domestic type with two distinct compartments has been lead. It is shown in this study that the Dunkle's relation about the productivity of a classical still can be applied to our system in order to predict reasonably the production of our still. We have then put the stress on alcohol distillation for this model in order to adapt solar distillation to alcohol distillation. On this field, the results show well that solar energy can perfectly be used to produce alcohol with our prototype.  相似文献   

6.
In this paper we present a modeling and parametric studies of a water-to-air heat exchanger. This exchanger is formed of a fan blowing the air to be heated through a battery of smooth tubes where the hot water—coming from solar concentrators—circulates. The heated air is injected into a thermal room to dry the clay bricks.In the first part, we study the most used models in the estimation of the heat transfer and air flow pressure drop across a tube bundle, and subsequently calculate the required transmitted power to the air.In the second part, we focus on the parametric study of the influence of the different geometric parameters of the exchanger on the heat flow rate, the air outlet temperature, the pressure drop and the requested transferred power to the air. The considered parameters are: The water heat flow rate, the heat exchanger compactness, the rows arrangement, the tube diameter, the transverse pitch, the total number of tubes, the number of rows and the air velocity.Simulations have shown that the heat exchanger performance could be improved essentially throughout the design and manufacturing process by modifying the different geometrical parameters and filling certain conditions.  相似文献   

7.
Hiroshi Tanaka 《Solar Energy》2010,84(11):1959-251
In this report, we present a theoretical analysis of a basin type solar still with internal and external reflectors. The external reflector is a flat plate that extends from the back wall of the still, and can presumably be inclined forwards or backwards according to the month. We have theoretically predicted the daily amount of distillate produced by the still throughout the year, which varies according to the inclination angle of both the glass cover and the external reflector, at 30°N latitude. We found the optimum external reflector inclination for each month for a still with a glass cover inclination of 10-50°. The increase in the average daily amount of distillate throughout the year of a still with inclined external reflector with optimum inclination in addition to an internal reflector, compared to a conventional basin type still was predicted to be 29%, 43% or 67% when the glass cover inclination is 10°, 30° or 50° and the length of external reflector is half the still’s length.  相似文献   

8.
In the current research work, performance enhancement of stepped solar still (SSS) having an external reflector (ER) and glass cover cooling (GCC) arrangements is presented. The individual and combined effects of ER and GCC on the performance of SSS have been evaluated and compared with simple SSS. The GCC reduces the glazing temperature significantly and results in increased distillate. The ER reflected the solar radiation inside the basin that increases the water temperature, consequently increasing distillate. The SSS having ER and GCC (SSS-ER-GCC) gave a maximum distillate of 4.340 kg/m2 which was observed, respectively, 12.43%, 3.21%, and 1.36% higher than that of simple SSS, SSS with ER (SSS-ER) and SSS with GCC (SSS-GCC). The average energy efficiency of SSS-ER-GCC was evaluated as 40.78%, which was found to be 14.36%, 7.84%, and 10.64%, respectively, higher than that of simple SSS, SSS-ER, and SSS-GCC. The carbon credits earned and CO2 mitigation were found the maximum for SSS-ER-GCC having values $65.96 and 4.40 tons, respectively. The economic payback period was found the minimum (490 days) for SSS-ER-GCC.  相似文献   

9.
In this paper, a novel hybrid photovoltaics/thermoelectric cooler (PV/TEC) distillation system has been introduced. The limitation for distillation system working under hot arid climate is the heat removal required for the condensation process. The novelty of the proposed system is that it utilizes TEC to improve the condensation process. The proposed system composed of two porous layers separated by an air gap. The upper porous layer is installed at the back of a PV module; the lower porous layer is installed at the top of a TEC modules layer. This system can provide the demand of electricity and potable water for those people who live in rural areas (using one unit or more). The proposed system prevents PV module from overheating and actively enhancing the condensation process of the evaporated water. A steady‐state mathematical model has been proposed. This model was solved and simulated by equation solver software. Wind speed, solar radiation, and ambient temperature effect on the system performance were simulated and discussed. Results showed that the maximum productivity of the system reached an ambient temperature of 298 K, solar radiation of 1000 W/m2 and wind speed of 5.5 m/s. The maximum yield of the system was 4.2 kg of distilled water per day with a net electrical output power of 73 W with an overall efficiency of 57.9% and PV cell efficiency of 12.32%.  相似文献   

10.
The paper presents a techno-economic model to evaluate the performance of a hybrid solar still. For this, three different sources of auxiliary energy, namely electricity, kerosene, and liquefied petroleum gas (LPG) have been considered. To appreciate the model, numerical calculations have also been made using prevailing prices of different fuels in the Indian market for the climate of Delhi, India.  相似文献   

11.
P. Namprakai  J. Hirunlabh 《Energy》2007,32(12):2376-2384
A transient-state mathematical model for an ethanol basin solar still based on Spalding's work was developed. Driving force B was defined based on the mass balance between the evaporating (S) and condensing (G) surfaces. Mass transfer conductance (g) was obtained from an indoor experiment. Then productivity could be calculated. In order to validate the model an ethanol basin solar still was tested under outdoor conditions. The model had RMSEs of 4% and 23% of the measured mean temperature and productivity. The mean productivity was 0.33 kg/h when the mean solar radiation input was 1.95 MJ/m2/h. The simulated distillate concentrations were 74, 59 and 24%v/v for ethanol solution concentrations of 50, 30 and 10%v/v. The monthly means of the simulated daily productivity and total daily solar radiation were linearly correlated.

An indoor experimental equipment of the same type as that used for the outdoor experiments was constructed. Ethanol solutions with concentrations of 10–100%v/v were distilled. The ethanol solution temperature varied between 40 and 70 °C. The experimental data from the still was then used to find the g used for the above mathematical model. The still height had a slight effect on the productivity. Increasing the ethanol solution concentration by not more than around 80% v/v could improve the still productivity.  相似文献   


12.
A stand-alone triple basin solar desalination system is experimentally tested and the results are discussed in this paper. This system mainly consists of a triple basin glass solar still (TBSS), cover cooling (CC) arrangement, parabolic dish concentrator (PDC) and photovoltaic (PV) panel. Four triangular hollow fins are attached at the bottom of the upper and middle basin in order to increase the heat transfer rate and place the energy storing materials. The performance of the system is studied by, conventional TBSS system, integrating the TBSS with CC, TBSS with PDC, and TBSS with CC and PDC. Also, each configuration is tested further by using fins without energy storing material, fins filled with river sand, and fins filled with charcoal. The results of the test reveal that, TBSS with charcoal and TBSS with river sand enhance the distillate by 34.2 and 25.6% higher than conventional TBSS distillates. TBSS with cover cooling reduces the glass temperature to about 8 °C compared to the conventional TBSS. The presence of concentrator increases the lower basin water temperature upto 85 °C. The maximum distillate yield of 16.94 kg/m2.day is obtained for TBSS with concentrator, cover cooling and charcoal in fins.  相似文献   

13.
A novel multistage solar desalination system with a photovoltaic heater was manufactured. The base of the down basin of the solar still had a layer of paraffin wax with a mass of 13 kg as a phase change material. The system has been studied to evaluate the enhancement of freshwater. Saltwater was heated by solar radiation and by a direct current water heater. The surfaces of condensation vapor, such as the pyramid glass cover and lower surface of two stacked trays, were designed. This is to improve the productivity of freshwater by decreasing the resistance of condensation. The high temperature of the glass cover is modified by using a cooling water shower, especially at the highest intensity. The study includes parameters, such as cooling water shower flow rate, down basin water level, and the effect of the heater. It is observed that the novel solar desalination is proportional to solar radiation, paraffin wax, the heat input from a heater, cooling water shower flow rate, and down basin water level. The Multiple Stage Effect Photovoltaic Heater (MSEPVH) can produce 15 L/day of distilled water. The excellent flow rate of cooling water, the total freshwater, and the efficiency of MSEPVH for the optimal day were mathematically and experimentally determined.  相似文献   

14.
Shiv Kumar  G.N. Tiwari 《Solar Energy》2009,83(9):1656-110
In this paper, an attempt is made to estimate the internal heat transfer coefficients of a deep basin hybrid (PV/T) active solar still. The estimation is based on outdoor experimental observation of hybrid (PV/T) solar still for composite climate of New Delhi (latitude 28°35′N and longitude 77°12′E). The internal heat transfer coefficients are evaluated by using thermal models proposed by various researchers. The comparison of hourly yield predicted using various thermal models to the experimental has also been carried out by evaluating the correlation coefficient and percentage deviation. It is observed that, Kumar and Tiwari model (KTM) better validate the results than the others model. The average annual values of convective heat transfer coefficient for the passive and hybrid (PV/T) active solar still are observed as 0.78 and 2.41 W m−2 K−1, respectively at 0.05 m water depth.  相似文献   

15.
This study investigates the individual and cumulative effects of phase change material (PCM) and evacuated tube collector (ETC) on the performance of a stepped solar still (SSS). Experiments have been performed on SSS, SSS loaded with PCM (SSS-PCM), SSS coupled with ETC (SSS-ETC), and SSS loaded with PCM and coupled with ETC (SSS-PCM-ETC). An innovative way of loading paraffin wax as PCM is introduced to utilize solar energy efficiently for the distillation process during off-sunshine hours. ETC is used to provide pre-heated RO wastewater to the distillation unit. The distillate output was observed maximum for SSS-PCM-ETC (4.97 kg/m2 day) which is 99% more than that of the SSS unit. The PCM and ETC individually with SSS unit increases the distillate output by 31% and 24%, respectively. The working time of the distillation unit was observed to be increased by 3 h by the use of PCM. The total heat transfer coefficient was evaluated at the maximum for SSS-PCM-ETC and was observed in the range of 16.94–167.04 W/m2 °C. The thermal energy efficiencies of SSS, SSS-ETC, SSS-PCM, and SSS-PCM-ETC were evaluated as 28.65%, 35.59%, 43.88%, and 44.04%, respectively. SSS-PCM-ETC is found to be the most economic with the best environmental conservation having maximum values of daily productive cost ($0.69) and carbon credits earned ($184.8).  相似文献   

16.
The aim of this work was to evaluate the technical feasibility of producing potable water from simulated seawater by integrating a membrane distillation module with a solar still. The relatively hot brine in the solar still was used as a feed to the membrane module. The synergistic action of the solar still and the membrane module in the production of potable water was quantified. For this purpose, two types of experiment were conducted, indoor experiments and outdoor experiments. The sensitivity of the permeate flux to the brine temperature, flow rate, salt concentration and solar irradiation were all investigated. Overall, the flux of water from the solar still was no more than 20% of the total flux. The brine temperature significantly affected the flux of both the solar still and the membrane module, while the effect of salt concentration was marginal. The effect of these process parameters was more noticeable in the membrane module than in the solar still.  相似文献   

17.
太阳能膜蒸馏集热系统实验研究   总被引:1,自引:0,他引:1  
根据实测太阳辐射量、风向、风速等气象数据以及集热器进出口温度、水箱温度等参数的变化情况,分析了太阳能集热系统稳定高效运行的基本规律,该系统可以使用太阳能等低位热能作为驱动力,用于海水、苦咸水的淡化处理,采用的新型U型管式集热器系统作为膜蒸馏的低位热源,不仅环保、节能,而且高效。  相似文献   

18.
A solar pond (SP) is a remarkable growth of renewable energy technology that has stored solar energy for storage purposes and is used in many solar thermal applications. It is also utilized for many purposes, such as heating, cooling, space heating, air conditioning, and many more. The present paper shows the use of an SP to improve the yield of solar still (SS) by providing hot water through the heat energy stored in it. It also reveals the use of shallow and mini SPs with SS to improve yield. Various future research works on SS using SPs have also been included in this paper. From the current review paper, it was concluded that the SP increases the yield of the SS.  相似文献   

19.
This present work is aimed to examine the effect of mass flow rate on distillate output and performance of a solar still in active mode. Outdoor experiments were conducted at the coastal town, Kakinada (16°93′N/83°33′E), Andhra Pradesh, India. A solar still with a 30° of fixed cover inclination, 1m2 of effective basin area, and a flat-plate collector (FPC) with an effective area of 2 m2 were used. An attempt was also made earlier in passive mode to optimize the water depth for the same solar still for maximum yield and distillation efficiency. For the passive still, it is observed that the capacity of heat storage and heat drop are significant parameters that affect the still performance. For the selected still design, the study reveals that 0.04 m water depth is the optimum value for specific climatic conditions. In the active solar still, with the optimum water depth, different flow rates of 0.5, 1 and 1.5 L/min are considered through FPC. It is observed that both the mass flow rate and the variation of internal heat transfer coefficients with the mass flow rate have a significant effect on the yield and performance of the still. The experimental results show that the combination of 1.5 L/min mass flow rate and an optimum water depth of 0.04 m leads to a maximum yield for the active solar still. The enhanced yield of the active solar still is 57.55%, compared with that of the passive solar still, due to increase in area of radiation collection and more heat absorption rate.  相似文献   

20.
The performance of compound parabolic concentrator assisted tubular solar still (CPC-TSS) and compound parabolic concentrator-concentric tubular solar still (CPC-CTSS) (to allow cooling water) with different augmentation systems were studied. A rectangular saline water trough of dimension 2 m × 0.03 m × 0.025 m was designed and fabricated. The effective collector area of the still is 2 m × 1 m with five sets of tubular still – CPC collectors placed horizontally with north-south orientation. Hot water taken from the CPC-CTSS was integrated to a pyramid type and single slope solar still. Diurnal variations of water temperature, air temperature, cover temperature and distillate yield were recorded. The results showed that, the productivity of the un-augmented CPC-TSS and CPC-CTSS were 3710 ml/day and 4960 ml/day, respectively. With the heat extraction technique, the productivity of CPC-CTSS with a single slope solar still and CPC-CTSS with a pyramid solar still were found as 6460 ml/day and 7770 ml/day, respectively. The process integration with different systems cost was found slightly higher but the overall efficiency and the produced distilled water yield was found augmented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号