首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate improved peptide linkers which allow both conjugation to biomolecules such as DNA and self-assembly with luminescent semiconductor quantum dots. A hexahistidine peptidyl sequence was generated by standard solid phase peptide synthesis and modified with the succinimidyl ester of iodoacetamide to yield a thiol-reactive iodoacetyl polyhistidine linker. The reactive peptide was conjugated to dye-labeled thiolated DNA which was utilized as a model target biomolecule. Agarose gel electrophoresis and fluorescence resonance energy transfer analysis confirmed that the linker allowed the DNA to self-assemble with quantum dots via metal-affinity driven coordination. In contrast to previous peptidyl linkers that were based on disulfide exchange and were thus labile to reduction, the reactive haloacetyl chemistry demonstrated here results in a more stable thioether bond linking the DNA to the peptide which can withstand strongly reducing environments such as the intracellular cytoplasm. As thiol groups occur naturally in proteins, can be engineered into cloned proteins, inserted into nascent peptides or added to DNA during synthesis, the chemistry demonstrated here can provide a simple method for self-assembling a variety of stable quantum dot bioconjugates.   相似文献   

2.
We synthesized organic solvent-soluble and water-soluble PbS quantum dots (QDs) with different sizes. The organic solvent-soluble PbS QDs dispersed in tetrachloroethylene were used to prepare bilayers structures of QDs bound by dithiol linkers on GaAs. The water-soluble PbS QDs were used to prepare bilayer structures of QDs on quartz based on alternating adsorption of polyelectrolyte. For bilayer films on GaAs, it was found that the stacking sequence of QDs affects the quantum yield and emission wavelength of the larger QDs. However, for bilayer films with different stacking sequences on quartz, the larger QDs show similar PL intensities and emission wavelength independent of the sequence. The probable mechanism for this difference observed is discussed in terms of charge transfer between QDs.  相似文献   

3.
Bharadwaj P  Novotny L 《Nano letters》2011,11(5):2137-2141
Photon emission from quantum dots (QDs) and other quantum emitters is characterized by abrupt jumps between an "on" and an "off" state. In contrast to ions and atoms however, the durations of bright and dark periods in colloidal QDs curiously defy a characteristic time scale and are best described by a power-law probability distribution, i.e., ρ(τ) ∝ τ(-α). We controllably couple a single colloidal QD to a single gold nanoparticle and find that power-law blinking is preserved unaltered even as the gold nanoparticle drastically modifies the excitonic decay rate of the QD. This resilience of the power law to change provides evidence that blinking statistics are not swayed by environment-induced variations in kinetics and provides clues toward the mechanism responsible for universal fluorescence intermittency.  相似文献   

4.
Recently, an ensemble of nuclear spins in a quantum dot have been proposed as a long-lived quantum memory. A quantum state of an electron spin in the dot can be faithfully transfered into nuclear spins through controlled hyperfine coupling. Here we study the decoherence of this memory due to nuclear spin dipolar coupling and inhomogeneous hyperfine interaction during the storage period. We calculated the maximum fidelity of writing, storing, and reading operations. Our results show that nuclear spin dynamics can severely limit the performance of the proposed device for quantum information processing and storage based on nuclear spins.  相似文献   

5.
This study reports a new nitrogen-doped carbonized polymer dot(CPD)-based solvatochromic probe.Its color-changing for different solvents was explored in detail ...  相似文献   

6.
Quantum dot superlattices (QDSLs) have been proposed for thermoelectric applications as a means of increasing thermal conductivity, σ, and reducing the lattice thermal conductivity, κ(l), to increase the dimensionless thermoelectric figure of merit, ZT. To fully exploit the thermoelectric potential of Si-Ge quantum dot superlattices (QDSLs), we performed a thorough study of the structural interplay of QDSLs with κ(l) using Green-Kubo theory and molecular dynamics. It was found that the resulting κ(l) has less dependence on the arrangement of the dots than to dot size and spacing. In fact, regardless of arrangement or concentration, QDSLs show a minimum κ(l) at a dot diameter of 1.4-1.6 nm and can reach values as low as 0.8-1.0 W mK?1, increasing ZT by orders of magnitude over bulk Si and Ge. The drastic reduction of thermal conductivity in such a crystalline system is shown to be the result of both the stress caused by the dots as well as the quality of the Si-Ge interface.  相似文献   

7.
Silver J  Ou W 《Nano letters》2005,5(7):1445-1449
We studied the fluorescence of quantum dots in cells. Coating quantum dots with cationic peptides caused them to be endocytosed and transported to lysosomes. After overnight incubation, their fluorescence apparently dimmed but became markedly "photoactivatable", increasing more than 3-fold within minutes on exposure to bright light, and decaying over hours in the dark. Photoactivation was greater in the presence of water than ethanol, and UV illumination compensated for lack of water during photoactivation. Dimming and photoactivation could affect the use of quantum dots as quantitative probes in vivo and lead to new uses, such as tracking molecular movement.  相似文献   

8.
ZnS nanodots highly dispersed on the surfaces of graphene sheets were successfully synthesized via an easy hydrothermal method by using Na2S as reducing agent as well as sulfide source. The reduction of graphite oxide (GO) to graphene was accompanied by the deposition of ZnS particles on the surface of graphene sheets. The results of X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) demonstrate the efficient reduction of GO to graphene sheets. The morphology characterization of the sample shows a wrinkled paper-like structure of the graphene sheets decorated with ZnS nanoparticles. Moreover, photoluminescence (PL) measurement shows a smooth spectrum, indicating fewer defects in the composite.  相似文献   

9.
In contrast to traditional semiconductors, conjugated polymers provide ease of processing, low cost, physical flexibility and large area coverage. These active optoelectronic materials produce and harvest light efficiently in the visible spectrum. The same functions are required in the infrared for telecommunications (1,300-1,600 nm), thermal imaging (1,500 nm and beyond), biological imaging (transparent tissue windows at 800 nm and 1,100 nm), thermal photovoltaics (>1,900 nm), and solar cells (800-2,000 nm). Photoconductive polymer devices have yet to demonstrate sensitivity beyond approximately 800 nm (refs 2,3). Sensitizing conjugated polymers with infrared-active nanocrystal quantum dots provides a spectrally tunable means of accessing the infrared while maintaining the advantageous properties of polymers. Here we use such a nanocomposite approach in which PbS nanocrystals tuned by the quantum size effect sensitize the conjugated polymer poly[2-methoxy-5-(2'-ethylhexyloxy-p-phenylenevinylene)] (MEH-PPV) into the infrared. We achieve, in a solution-processed device and with sensitivity far beyond 800 nm, harvesting of infrared-photogenerated carriers and the demonstration of an infrared photovoltaic effect. We also make use of the wavelength tunability afforded by the nanocrystals to show photocurrent spectra tailored to three different regions of the infrared spectrum.  相似文献   

10.
We have investigated the effects of silicon doping concentration within thirty-period self-assembled quantum dot (QD) layers on quantum dot infrared photodetectors (QDIPs). The lens-shaped quantum dots with the dot density of 1 × 1011 cm− 2 were observed by atomic force microscope (AFM). From the high ratio of photoluminescence (PL) peak intensities from dot layer to that from wetting layer, we have concluded that high dot density caused the short diffusion length for carriers to be easily captured by QDs. Moreover, the Si-doped samples exhibited the multi-state transitions within the quantum dots, which were different to the single level transition of undoped sample. Besides, the dominant PL peaks of Si-doped samples were red-shifted by about 25 meV compared to that of the undoped sample. It should result from the dopant-induced lowest transition state and therefore, the energy difference should be equal to the binding energy of Si in InAs QDs.  相似文献   

11.
PbS and PbSe were prepared by hot injection method. The powders were used for preparing the corresponding films by using thermal evaporation technique. The structural, optical and electrical properties of PbS and PbSe thin films were investigated. The structural properties of PbS and PbSe were investigated by X-ray diffraction, transmission electron microscopy and energy dispersive X-ray techniques (EDX). PbS and PbSe films were found to have cubic rock salt structure. The particles size ranged from 1.32 to 2.26 nm for PbS and 1.28–2.48 nm for PbSe. EDX results showed that PbS films have rich sulphur content, while PbSe films have rich lead content. The optical constants (absorption coefficient and the refractive index) of the films were determined in the wavelength range 200–2500 nm. The optical energy band gap of PbS and PbSe films was determined as 3.25 and 2.20 eV, respectively. The refractive index, the optical dielectric constant and the ratio of charge carriers concentration to its effective mass were determined. The electrical resistivity, charge carriers concentration and carriers mobility of PbS at room temperature were determined as 0.55 Ω cm, 1.7 × 1016 cm?3 and 656 cm2 V?1 s?1, respectively, and for PbSe films they were determined as 0.4 Ω cm, 9 × 1015 cm?3 and 1735 cm2 V?1 s?1, respectively. These electrical parameters were investigated as a function of temperature.  相似文献   

12.
A combined active lasing region of the new type, containing an In0.2Ga0.8As quantum well (QW) and a single-layer array of InAs quantum dots (QDs) located outside the QW, was studied. In this system, the QW accumulates the injected charge carriers and the QD array serves as a radiator. The energy levels of electrons and holes in a QD were calculated. It is shown that the QDs can be filled by the resonance tunneling of holes from the QW to an unoccupied QD. The electron energy level in an unoccupied QD is markedly higher than that in the QW, but occupation of the QD by a hole leads to a resonance of the electron levels. Theoretical conclusions agree with the results of observations on a prototype laser with a combined active region.  相似文献   

13.
Zhang LM  Fogler MM 《Nano letters》2006,6(10):2206-2210
We analyze electrostatic interaction between a sharp conducting tip and a thin one-dimensional wire, e.g., a carbon nanotube, in a scanned gate microscopy (SGM) experiment. The problem is analytically tractable if the wire resides on a thin dielectric substrate above a metallic backgate. The characteristic spatial scale of the electrostatic coupling to the tip is equal to its height above the substrate. Numerical simulations indicate that imaging of individual electrons by SGM is possible once the mean electron separation exceeds this scale (typically, a few tens of nm). Differences between weakly and strongly invasive SGM regimes are pointed out.  相似文献   

14.
Liu H  Zhang J 《Applied optics》2012,51(14):2767-2771
Because the dark current and the noise of quantum dot infrared photodetectors (QDIPs) can bring about a degradation in their performance, they have attracted more and more attention in recent years. In this paper, an algorithm used to evaluate the dark current of the QDIP is proposed, which is based on the algorithm including the common contribution of the microscale and the nanoscale electron transport. Namely, by accounting for the dependence of the drift velocity on the applied electric field, we greatly enhance the accuracy of the dark current calculation compared with that in the previous algorithm. This proposed algorithm is further used to estimate the noise current of QDIP, and the calculated results show a good agreement with the published data.  相似文献   

15.
We report a simple, rapid approach to synthesize water-soluble and biocompatible fluorescent quantum dot (QD) micelles by encapsulation of monodisperse, hydrophobic QDs within surfactant/lipid micelles. Analyses of UV-vis and photo luminescence spectra, along with transmission electron microscopy, indicate that the water-soluble semiconductor QD micelles are monodisperse and retain the optical properties of the original hydrophobic QDs. The QD micelles were shown to be biocompatible and exhibited little or no aggregation when taken up by cultured rat hippocampal neurons.  相似文献   

16.
17.
The electrical properties of InAs quantum dots (QD) in InAs/GaAs structures have been investigated by space charge spectroscopy techniques, current–voltage and capacitance–voltage measurements. Au/GaAs/InAs(QD)/GaAs Schottky barriers as well as ohmic/GaAs/InAs(QD)/GaAs/ohmic structures have been prepared in order to analyze the apparent free carrier concentration profiles across the QD plane, the electronic levels around the QD and the electrical properties of the GaAs/InAs(QD)/GaAs heterojunction. Accumulation and/or depletion of free carriers at the QD plane have been observed by Capacitance–Voltage (CV) measurements depending on the structure parameters and growth procedures. Similarly, quantum dot levels which exhibit distributions in energy have been detected by Deep Level Transient Spectroscopy (DLTS) and Admittance Spectroscopy (AS) measurements only on particular structures. Finally, the rectification properties of the InAs/GaAs heterojunction have been investigated and the influence of the related capacitance on the measured capacitance has been evidenced.  相似文献   

18.
19.
The size-effect tunability of colloidal quantum dots enables facile engineering of the bandgap at the time of nanoparticle synthesis. The dependence of effective bandgap on nanoparticle size also presents a challenge if the size dispersion, hence bandgap variability, is not well-controlled within a given quantum dot solid. The impact of this polydispersity is well-studied in luminescent devices as well as in unipolar electronic transport; however, the requirements on monodispersity have yet to be quantified in photovoltaics. Here we carry out a series of combined experimental and model-based studies aimed at clarifying, and quantifying, the importance of quantum dot monodispersity in photovoltaics. We successfully predict, using a simple model, the dependence of both open-circuit voltage and photoluminescence behavior on the density of small-bandgap (large-diameter) quantum dot inclusions. The model requires inclusion of trap states to explain the experimental data quantitatively. We then explore using this same experimentally tested model the implications of a broadened quantum dot population on device performance. We report that present-day colloidal quantum dot photovoltaic devices with typical inhomogeneous linewidths of 100-150 meV are dominated by surface traps, and it is for this reason that they see marginal benefit from reduction in polydispersity. Upon eliminating surface traps, achieving inhomogeneous broadening of 50 meV or less will lead to device performance that sees very little deleterious impact from polydispersity.  相似文献   

20.
This work presents a simple method to prepare water-soluble alloyed CdSe-ZnS quantum dots, which photoluminescence are tunable from green to red continuously, through replacing the hydrophobic oleic acid stabilizers with hydrophilic thiol molecules. 3-Mercaptopropionic acid and 2-mercaptoethylamine have been used respectively as the surface substitutes to obtain water-soluble quantum dots with negative and positive surface charges. The methods achieved highly efficient phase transfer (approximately 100%) of quantum dots from non-polar media to water. Different techniques including photoluminescence, ultraviolet-visible absorption, Fourier transform infrared spectra, hydrodynamic diameter and zeta potential have been employed to characterize the products of phase transfer. And the results demonstrate that the obtained quantum dots exhibit a remarkably colloidal stability and have a relatively small hydrodynamic diameter with quantum yield up to 30%, which could benefit the applications of luminescent quantum dots carried out in aqueous media, such as bioimaging, metal ions sensors and photocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号