首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
张谦 《山西建筑》2012,38(10):140-141
分别介绍了细集料亚甲蓝与砂当量两种不同的试验方法及实验数据的不同之处,总结归纳了两种试验方法的特点,并得出一些具有指导意义的结论。  相似文献   

2.
There is increasing concern regarding the presence of unregulated trace organic chemicals in drinking water supplies that receive discharge from municipal wastewater treatment plants. In comparison to conventional and advanced drinking water treatment, riverbank filtration represents a low-cost and low-energy alternative that can attenuate total organic carbon (TOC) as well as trace organic chemicals (TOrC). This study examined the role of predominant redox conditions, retention time, biodegradable organic carbon, and temperature to achieve attenuation of TOC and TOrC through monitoring efforts at three full-scale RBF facilities in different geographic areas of the United States. The RBF systems investigated in this study were able to act as a reliable barrier for TOC, nitrogen, and certain TOrC. Temperature (seasonal) variation played an important role for the make-up of the river water quality and performance of the RBF systems. Temperatures of less than 10 °C did not affect TOC removal but resulted in diminished attenuation of nitrate and select TOrC.  相似文献   

3.
This study assessed the efficacy for removing Cryptosporidium parvum oocysts of poorly sorted, Fe- and Al-rich, subsurface sediments collected from 0.9 to 4.9 and 1.7-13.9 m below land surface at an operating riverbank filtration (RBF) site (Russian River, Sonoma County, CA). Both formaldehyde-killed oocysts and oocyst-sized (3 μm) microspheres were employed in sediment-packed flow-through and static columns. The degree of surface coverage of metal oxides on sediment grain surfaces correlated strongly with the degrees of oocyst and microsphere removals. In contrast, average grain size (D50) was not a good indicator of either microsphere or oocyst removal, suggesting that the primary mechanism of immobilization within these sediments is sorptive filtration rather than physical straining. A low specific UV absorbance (SUVA) for organic matter isolated from the Russian River, suggested that the modest concentration of the SUVA component (0.8 mg L−1) of the 2.2 mg L−1 dissolved organic carbon (DOC) is relatively unreactive. Nevertheless, an amendment of 2.2 mg L−1 of isolated river DOC to column sediments resulted in up to a 35.7% decrease in sorption of oocysts and (or) oocyst-sized microspheres. Amendments (3.2 μM) of the anionic surfactant, sodium dodecyl benzene sulfonate (SDBS) also caused substantive decreases (up to 31.9 times) in colloid filtration. Although the grain-surface metal oxides were found to have a high colloid-removal capacity, our study suggested that any major changes within the watershed that would result in long-term alterations in either the quantity and (or) the character of the river's DOC could alter the effectiveness of pathogen removal during RBF operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号