首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Entamoeba histolytica causes invasive amebiasis, a major parasitic disease of the developing world, whose primary symptoms are liver abscess and colitis. All strains of E. histolytica express a 260-kDa surface Gal/GalNAc lectin that is antigenically conserved and immunogenic. The lectin is required for adherence to human intestinal epithelial cells and contact-dependent killing of immune effector cells. By expression cloning, the carbohydrate recognition domain (CRD) was identified within the lectin heavy-subunit cysteine-rich region. Of interest for a hepatic parasite, the CRD had sequence identity to the receptor-binding domain of hepatocyte growth factor (HGF) and competed with HGF for binding to the c-Met HGF receptor. In an animal model of invasive disease, immunization with the CRD inhibited liver-abscess formation, yet in humans, a naturally acquired immune response against the CRD did not persist.  相似文献   

2.
The ability to discriminate between galactose and N- acetylgalactosamine, observed in some lectins, is crucial for their biological activity as well as their usefulness as tools in biology and medicine. However, the molecular basis of differential binding of lectins to these two sugars is poorly understood. Peanut agglutinin (PNA) is one of the few galactose-specific legume lectins which does not bind N- acetylgalactosamine at all and is, therefore, ideal for the study of the basis of specificity towards C-2 substituted derivatives of galactopyranosides. Examination of the three-dimensional structure of PNA in complex with lactose revealed the presence of both a longer loop and bulkier residues in the region surrounding the C-2 hydroxyl of the galactopyranoside ring, which can sterically prevent the accommodation of a bulky substituent in this position. One such residue, is a glutamic acid at position 129 which protrudes into the binding site and perhaps directly obstructs any substitution at the C-2 position. Two mutants in bacterially expressed PNA were therefore constructed. These were E129D and E129A, in which Glu129 was replaced by Asp and Ala, respectively. The specificity of the mutants for galactose, galactosamine, and N- acetylgalactosamine was examined through observing the inhibition of hemagglutination and binding of the lectin to immobilized asialofetuin. The results showed that the affinity of E129A and E129D for C-2-substituted derivatives of the galactose varies. The mutant E129D showed significant binding towards N- acetylgalactosamine, suggesting that the residue Glu 129 is crucial in imparting exclusive galactose-specificity upon PNA. This study not only attempts to provide an explanation for the inability of PNA to accommodate C-2-substituted derivatives at its primary subsite, but also seeks to present a basis for engineering lectins with altered specificities.  相似文献   

3.
AQN-1 and AQN-3 form part of the complement of surface-associated lectins which coat the plasma membrane overlying the acrosomal cap of in vitro capacitated boar spermatozoa. They belong to the spermadhesin protein family and have binding affinity for glycoconjugates of the zona pellucida, the extracellular investment surrounding mammalian eggs. The oligosaccharide and zona pellucida binding characteristics of spermadhesins AQN-1 and AQN-3 were investigated using a solid-phase assay and biotinylated glycoprotein ligands. Both sperm proteins bind glycoproteins containing Gal beta (1-4)-GlcNAc and Gal beta-(1-3)-GalNAc oligosaccharide sequences with dissociation constants (Kd) of 0.08 to 0.8 microM, and to zona pellucida glycoproteins with Kd = 0.15-0.25 microM. However, 5-N-acetyl neuraminic acid alpha (2-3/6)-linked to the galactose residue decreases the affinity of glycosylated ligands to AQN-1 three-fold, although it did not affect oligosaccharide binding to AQN-3. In addition, AQN-3 binds preferentially to glycoproteins with either a linear or tri- and tetraantennary carbohydrates than to those containing diantennary N-acetyllactosamine structures. The similar but distinct oligosaccharide recognition capabilities of spermadhesins AQN-1 and AQN-3 (this work) and AWN-1 (Dostálová, Z, Calvete, J.J., Sanz, L., and T?pfer-Petersen, E. (1995) Eur. J. Biochem. 230, 329-336) suggest that, in the pig, sperm-zona pellucida binding might be mediated by lectins displaying similar although distinct carbohydrate-recognition abilities.  相似文献   

4.
Alpha-Fetoprotein (AFP) glycoforms, defined as AFP with different chemical structures of carbohydrate, were analyzed by affinity electrophoresis with several lectins of known specificities against complex-type oligosaccharides. Serum AFP samples from cord blood on full-term delivery and from patients with hepatocellular carcinoma and extrahepatic malignancies including gastrointestinal tumors and yolk sac tumors were used. Two-dimensional lectin affinity electrophoresis and also lectin affinity chromatography coupled with lectin affinity electrophoresis were employed. More than ten AFP glycoforms were identified or characterized using the above-mentioned AFP samples. Known specificities of the lectins against complex-type oligosaccharides were refined or their additional specificities were found in this study. Lectin appeared to have specificity against carbohydrates by recognizing not only specific residues but also the whole carbohydrate molecule containing the residues, resulting in differential affinities for the lectin.  相似文献   

5.
A critical element of lutropin bioactivity in vivo is its rapid removal from the blood by a receptor, located in hepatic endothelial cells, that recognizes the terminal sulfated carbohydrate structure SO4-4-GalNAcbeta1,4GlcNAcbeta1,2Manalpha (S4GGnM). We have previously shown that the macrophage mannose (Man)-receptor cDNA directs the synthesis of a protein that binds oligosaccharides with either terminal S4GGnM or terminal Man, at independent sites. We now show that the cysteine-rich (Cys-Rich) domain at the N terminus of the Man/S4GGnM receptor accounts for binding of oligosaccharides with terminal GalNAc-4-SO4, whereas calcium-dependent carbohydrate recognition domains (CRDs) account for binding of ligands containing terminal Man. The Cys-Rich domain is thus a previously unrecognized carbohydrate binding motif. Cys-Rich domains have been described on the three other members of the endocytic C-type lectin family of receptors. The structural relationship of these receptors to the Man/S4GGnM receptor raises the possibility that their Cys-Rich domains also bind carbohydrate moieties and contribute to their function.  相似文献   

6.
Differentiating the binding properties of applied lectins should facilitate the selection of lectins for characterization of glycoreceptors on the cell surface. Based on the binding specificities studied by inhibition assays of lectin-glycan interactions, over twenty Gal and/or GalNAc specific lectins have been divided into eight groups according to their specificity for structural units (lectin determinants), which are the disaccharide as all or part of the determinants and of GalNAc alpha 1-->Ser (Thr) of the peptide chain. A scheme of codes for lectin determinants is illustrated as follows: (1) F (GalNAc alpha 1-->3GalNAc), Forssman specific disaccharide--Dolichos biflorus (DBL), Helix pomatia (HPL) and Wistaria floribunda (WFL) lectins. (2) A (GalNAc alpha 1-->3 Gal), blood group A specific disaccharide--Codium fragile subspecies tomentosoides (CFT), Soy bean (SBL), Vicia villosa-A4 (VVL-A4), and Wistaria floribunda (WFL) lectins. (3) Tn (GalNAc alpha 1-->Ser (Thr) of the protein core)--Vicia villosa B4 (VVL-B4), Salvia sclarea (SSL), Maclura pomifera (MPL), Bauhinia purpurea alba (BPL) and Artocarpus integrifolia (Jacalin, AIL). (4) T (Gal beta 1-->3GalNAc), the mucin type sugar sequences on the human erythrocyte membrane(T alpha), T antigen or the disaccharides at the terminal nonreducing end of gangliosides (T beta)--Peanut (PNA), Bauhinia purpurea alba (BPL), Maclura pomifera (MPL), Sophora japonica (SJL), Artocarpus lakoocha (Artocarpin) lectins and Abrus precatorius agglutinin (APA).(5) I and II (Gal beta 1-->3(4)GlcNAc)--the disaccharide residue at the nonreducing end of the carbohydrate chains derived from either N- or O-glycosidic linkage--Ricinus communis agglutinin (RCA1), Datura stramonium (TAL, Thorn apple), Erythrina cristagalli (ECL, Coral tree), and Geodia cydonium (GCL). (6) B (Gal alpha 1-->3Gal), human blood group B specific disaccharide--Griffonia(Banderiaea) simplicifolia B4 (GSI-B4). (7) E (Gal alpha 1-->4Gal), receptors for pathogenic E. coli agglutinin, Shiga toxin and Mistletoe toxic lectin-I (ML-I) and abrin-a.  相似文献   

7.
Quantum dye (QD), a macrocyclic europium-chelate, developed as a cytological marker, has never been used for quantitative applications. It would be ideal, however, if the same tracer can be used for both qualitative and quantitative purposes. We have labeled some lectins and neoglycoproteins with QD for the purpose of quantitative analyses in glycobiology, and tested its suitability in three different areas in glycobiology: (1) glycosyltransferase, (2) an animal lectin - mannose-binding protein, and (3) the Gal/GalNAc receptor of rat liver membrane. Usefulness of QD-labeled lectins was amply demonstrated by the quantification of galactosyltransferase activity using QD-soybean agglutinin and QD-RCA120 ( Ricinus communis agglutinin). We also showed that QD-labeled neoglycoproteins, QD-Man-BSA and QD-Gal-BSA, can replace radioiodinated counterparts in the binding assays of animal lectins (serum mannose binding protein and hepatic Gal/GalNAc receptor.) The advantage of QD and other europium labels is that it does not decay as radioiodides do. The long shelf-life results in more consistent results from repeated experiments.  相似文献   

8.
The mammalian hepatic asialoglycoprotein receptor, a member of the C-type animal lectin family, displays preferential binding to N-acetylgalactosamine compared with galactose. The structural basis for selective binding to N-acetylgalactosamine has been investigated. Regions of the carbohydrate-recognition domain of the receptor believed to be important in preferential binding to N-acetylgalactosamine have been inserted into the homologous carbohydrate-recognition domain of a mannose-binding protein mutant that was previously altered to bind galactose. Introduction of a single histidine residue corresponding to residue 256 of the hepatic asialoglycoprotein receptor was found to cause a 14-fold increase in the relative affinity for N-acetylgalactosamine compared with galactose. The relative ability of various acyl derivatives of galactosamine to compete for binding to this modified carbohydrate-recognition domain suggest that it is a good model for the natural N-acetylgalactosamine binding site of the asialoglycoprotein receptor. Crystallographic analysis of this mutant carbohydrate-recognition domain in complex with N-acetylgalactosamine reveals a direct interaction between the inserted histidine residue and the methyl group of the N-acetyl substituent of the sugar. Evidence for the role of the side chain at position 208 of the receptor in positioning this key histidine residue was obtained from structural analysis and mutagenesis experiments. The corresponding serine residue in the modified carbohydrate-recognition domain of mannose-binding protein forms a hydrogen bond to the imidazole side chain. When this serine residue is changed to valine, loss in selectivity for N-acetylgalactosamine is observed. The structure of this mutant reveals that the beta-branched valine side chain interacts directly with the histidine side chain, resulting in an altered imidazole ring orientation.  相似文献   

9.
A lectin histochemical study has been carried out on mouse granulated metrial gland cells, the major leucocyte population that differentiates in the uterine wall in pregnancy. The binding characteristics of 26 lectins were examined using light microscopical methods. Fourteen of the lectins, with affinities ranging through N-acetylgalactosamine, galactose, N-acetylglucosamine, mannose and sialic acid residues, bound to the cytoplasmic granules of granulated metrial gland cells, and each appeared to bind to the limiting membrane of the granules. The binding characteristics of three of these lectins (Wheat germ agglutinin, Concanavalin A and Helix pomatia agglutinin) were examined using electron microscopical methods. These showed a different binding pattern to the cytoplasmic granules of granulated metrial gland cells compared with that found using light microscopical methods, as they appeared to bind evenly across the granule's matrix. This binding pattern corresponds to the reactivity of the granule matrix in the periodic acid-Schiff technique. Six lectins bound to the cell membranes of granulated metrial gland cells. These included the E and L isoforms of Phaseolus vulgaris agglutinin, with affinities for complex carbohydrates, whose binding differences were related to the stage of differentiation of the granulated metrial gland cells. The lectin binding described presents additional markers of granulated metrial gland cells and tools for investigating carbohydrate moieties in the functional activities of granulated metrial gland cells.  相似文献   

10.
Maclura pomifera agglutinin is a tetrameric plant seed lectin with high affinity for the tumor-associated T-antigen disaccharide, Galbeta1,3GalNAcalpha, and hence for many O-linked glycopeptide structures. Unlike members of most lectin families, it lacks both metal ions and Cys residues. The structure of its complex with Galbeta1,3GalNAc was determined to 2.2 by first using multiwavelength anomalous diffraction with a lead derivative of the native protein, and then using molecular replacement with the unrefined structure as a model to solve the structure of the complex. The subunits share the beta-prism architecture and three-fold pseudo-symmetry of the related lectin jacalin, with the 21-residue beta-chains in the center of the tetramer. Interactions with the GalNAc predominate in the binding of the disaccharide. It forms a network of H-bonds with only one side chain, from an Asp residue, the amino group of the N-terminal Gly of the alpha-chain, and peptide backbone atoms of two aromatic residues. The Gal moiety does not H-bond directly with residues in the same monomer, i.e. there is no true subsite for it, but there are interactions through two water molecules. In the crystal, it interacts with residues in the binding site of an adjacent tetramer. The minimum energy conformation expected for the disaccharide is retained, despite its mediating the tetramer-tetramer interactions in the crystal packing. The resulting lattice is comparable to those seen for complexes of other lectins with branched glycopeptides.  相似文献   

11.
The Griffonia simplicifolia-I (GS-I) isolectins have been used to probe the effect of lectin valence on their high-affinity binding to human erythrocytes. These tetrameric lectins are composed of A and B subunits and constitute a series of five isolectins (A4, A3B, A2B2, AB3, B4). The A subunit is specific for alpha-D-GalNAc end groups and binds to the blood type A determinant GalNAcalpha1, as well as to terminal alpha-D-Gal groups found on type B cells. The B subunit is specific for alpha-D-Gal end groups, and binds very specifically to type B erythrocytes. This series of isolectins is tetravalent (A4), trivalent (A3B), divalent (A2B2), and monovalent (AB3) for type A erythrocytes; thus, this system provides the opportunity to examine the effect of lectin valency on the association constants of these GS-I isolectins binding to cells. Cell binding experiments carried out using 125I-labeled GS-I isolectins and type A human erythrocytes allowed us to demonstrate that (1) the association constant of the isolectin monovalent for alpha-D-GalNAc (AB3) is virtually identical to its association constant for the haptenic sugar methyl-N-acetyl-alpha-D-galactosaminide, reported previously, and (2) the association constant of the GS-I isolectins for human type A erythrocytes increases with increasing valency of the isolectin. These results indicate that the increased affinity displayed by the GS-I isolectins for human type A erythrocytes is dependent on their multivalency, and not on an extended binding site nor on nonspecific, or noncarbohydrate, interactions of the lectin with the cell surface. These findings should be of general relevance to understanding the high-affinity interactions observed between other multivalent proteins and multivalent ligands (e.g., cell surfaces).  相似文献   

12.
Two mannose-binding lectins, Allium sativum agglutinin (ASA) I (25 kDa) and ASAIII (48 kDa), from garlic bulbs have been purified by affinity chromatography followed by gel filtration. The subunit structures of these lectins are different, but they display similar sugar specificities. Both ASAI and ASAIII are made up of 12.5- and 11.5-kDa subunits. In addition, a complex (136 kDa) comprising a polypeptide chain of 54 +/- 4 kDa and the subunits of ASAI and ASAIII elutes earlier than these lectins on gel filtration. The 54-kDa subunit is proven to be alliinase, which is known to form a complex with garlic lectins. Constituent subunits of ASAI and ASAIII exhibit the same sequence at their amino termini. ASAI and ASAIII recognize monosaccharides in mannosyl configuration. The potencies of the ligands for ASAs increase in the following order: mannobiose (Manalpha1-3Man) < mannotriose (Manalpha1-6Manalpha1-3Man) approximately mannopentaose < Man9-oligosaccharide. The addition of two GlcNAc residues at the reducing end of mannotriose or mannopentaose enhances their potencies significantly, whereas substitution of both alpha1-3- and alpha1-6-mannosyl residues of mannotriose with GlcNAc at the nonreducing end increases their activity only marginally. The best manno-oligosaccharide ligand is Man9GlcNAc2Asn, which bears several alpha1-2-linked mannose residues. Interaction with glycoproteins suggests that these lectins recognize internal mannose as well as bind to the core pentasaccharide of N-linked glycans even when it is sialylated. The strongest inhibitors are the high mannose-containing glycoproteins, which carry larger glycan chains. Indeed, invertase, which contains 85% of its mannose residues in species larger than Man20GlcNAc, exhibited the highest binding affinity. No other mannose- or mannose/glucose-binding lectin has been shown to display such a specificity.  相似文献   

13.
The seed lectin from Dioclea grandiflora and jack bean lectin concanavalin A (ConA) are both members of the Diocleinae subtribe of Leguminosae lectins. Both lectins have recently been shown to possess enhanced affinities and extended binding sites for the trisaccharide, 3,6-di-O-(alpha-D-mannopyranosyl)-D-mannose, which is present in the core region of all asparagine-linked carbohydrates (Gupta, D., Oscarson, S., Raju, S., Stanley, P. Toone, E. J. and Brewer, C. F. (1996) Eur. J. Biochem. 242, 320-326). In the present study, the binding specificities of seven other lectins from the Diocleinae subtribe have been investigated by hemagglutination inhibition and isothermal titration microcalorimetry (ITC). The lectins are from Canavalia brasiliensis, Canavalia bonariensis, Cratylia floribunda, Dioclea rostrata, Dioclea virgata, Dioclea violacea, and Dioclea guianensis. Hemagglutination inhibition and ITC experiments show that all seven lectins are Man/Glc-specific and have high affinities for the core trimannoside, like ConA and D. grandiflora lectin. All seven lectins also exhibit the same pattern of binding to a series of monodeoxy analogs and a tetradeoxy analog of the trimannoside, similar to that of ConA and D. grandiflora lectin. However, C. bonariensis, C. floribunda, D. rostrata, and D. violacea, like D. grandiflora, show substantially reduced affinities for a biantennary complex carbohydrate with terminal GlcNAc residues, while C. brasiliensis, D. guianensis, and D. virgata, like ConA, exhibit affinities for the oligosaccharide comparable with that of the trimannoside. Thermodynamic data obtained by ITC indicate different energetic mechanisms of binding of the above two groups of lectins to the complex carbohydrate. The ability of the lectins to induce histamine release from rat peritoneal mast cells is shown to correlate with the relative affinities of the proteins for the biantennary carbohydrate.  相似文献   

14.
We studied the structure of N-linked carbohydrates bound to apolipoprotein H by a combination of two methods which make use of lectins. Digoxigenin-labelled lectins are used for the structural characterization of carbohydrate chains of glycoproteins. Concanavalin A lectin affinity chromatography was used to analyse apolipoprotein H according to the characteristics of its carbohydrate chain inner to sialic acid residues. Our results from digoxigenin-labelled lectins analysis showed that apolipoprotein H gave positive bands to SNA, DSA, GNA, PNA and AAA lectins. Apolipoprotein H gave a negative band when reacted with MAA lectin. When we applied apolipoprotein H onto the Concanavalin A lectin column no detectable amounts of protein were eluted with Concanavalin A buffer. After adding a buffer with low sugar concentration (10 mM glucoside) a large amount of apolipoprotein H was recovered. These molecules of apolipoprotein H weakly bound to the lectin. When a higher sugar concentration (500 mM mannoside) was added most of the sample applied was eluted. These molecules of apolipoprotein H firmly bound to the column having high affinity for the lectin. These results combined with those coming from the digoxigen-labeled lectins method enable us to understand the inner structure of carbohydrate chains with their outer branches. Molecules of apolipoprotein H which weakly bind to Concanavalin A could bear complex N-glycans organized in biantennary or truncated hybrid structures. Firmly bound apolipoprotein H referred to molecules rich in N-glycan hybrid structures. They have an outer branch belonging to the high mannose carbohydrate chains which explain the ability to bind to the column and an other main branch bearing the sequence galactose beta-(1-4)-N-acetylglucosamine beta-(1-2) mannose. Galactose could be the terminal sugar or, alternatively, be masked with sialic acid alpha-(2-6) terminally linked.  相似文献   

15.
The Man/Glc-specific seed lectin from Dioclea grandiflora (DGL) is a member of the Diocleinae subtribe that includes the jack bean lectin concanavalin A (ConA). Both DGL and ConA bind with high affinity to the "core" trimannoside moiety, 3, 6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside, which is present in asparagine-linked carbohydrates. Recent hemagglutination inhibition studies suggest that DGL and ConA recognize similar epitopes of the trisaccharide but possess different binding specificities for complex carbohydrates (Gupta, D., Oscarson, S., Raju, T. S., Stanley, P., Toone, E. J., and Brewer, C. F. (1996) Eur. J. Biochem. 242, 320-326). In the present study, we have used isothermal titration microcalorimetry to determine the thermodynamics of binding of DGL to a complete set of monodeoxy analogs of the core trimannoside as well as a tetradeoxy analog. The thermodynamic data indicate that DGL recognizes the 2-, 3-, 4-, and 6-hydroxyl groups of the alpha(1,6) Man residue, the 3- and 4-hydroxyl group of the alpha(1, 3) Man residue, and the 2- and 4-hydroxyl groups of the central Man residue of the trimannoside. The thermodynamic data for the tetradeoxy analog lacking the 3- and 4-hydroxyl group of the alpha(1, 3) Man residue, and the 2- and 4-hydroxyl groups of the central Man residue of the trimannoside are consistent with the involvement of these hydroxyl groups in binding. While the overall pattern of data for DGL binding to the deoxy analogs is similar to that for ConA (Gupta, D., Dam, T. K., Oscarson, S., and Brewer, C. F. (1997) J. Biol. Chem. 272, 6388-6392), differences exist in the data for certain monodeoxy analogs binding to the two lectins. Differences are also observed in the thermodynamics of binding of DGL and ConA to a biantennary complex carbohydrate. In the following paper (Rozwarski, D. A., Swami, B. M., Brewer, C. F., and Sacchettini, J. C. (1998) J. Biol. Chem. 273, 32818-32825), the x-ray crystal structure of DGL complexed to the core trimannoside is presented, and a comparison is made of the thermodynamic binding data for DGL and ConA as well as the structures of their respective trimannoside complexes.  相似文献   

16.
1. Fluorescein isothiocyanate-conjugated concanavalin A (F-conA) and soy bean agglutinin (F-SBA) bind to the surface of EDTA-dissociated cells from blastula and gastrula stage Xenopus laevis and X. mulleri embryos. 2. Binding of these lectins is abolished by appropriate haptens (alpha-methyl-D-mannopyranoside for F-conA and 2-acetamido-2-deoxy-D-galactose for F-sba). 3. Gastrula stage cells show a clustering or capping of lectin binding sites not shown by blastula stage cells. 4. At least for F-conA, this capping is induced by the lectin. 5. There are no striking regional differences in either amount or pattern of lectin binding in early gastrulae of both species.  相似文献   

17.
A lectin histochemical study was performed to investigate the glycoconjugate saccharidic moieties of the human postmenopausal endometrium (14 atrophic and 15 hyperplastic). For this purpose a battery of seven horseradish peroxidase-conjugated lectins (PNA, SBA, DBA, WGA, ConA, LTA and UEA I) was used. No differences in lectin binding between atrophic and hyperplastic endometria were observed. This investigation allowed us to provide a basic picture of the oligosaccharidic distribution in postmenopausal endometria. The data on the saccharidic distribution at the postmenopausal endometria showed a large amount of sugar residues at all the investigated sites, i.e. the lining and glandular epithelium, the stroma and the vessels (capillary and large vessels). Furthermore, at the endometrial lining epithelium, at the glands and at the wall of the blood vessels of some postmenopausal women the presence of alpha-L-fucosyl residues which bind via alpha (1-6) linkage to penultimate glucosaminyl residues and/or difucosylated oligosaccharides was demonstrated for the first time.  相似文献   

18.
A monoclonal antibody that reacts with a 150-kDa protein of Entamoeba histolytica on Western immunoblotting under nonreducing conditions inhibits the adherence and cytotoxicity of the ameba to mammalian cells in vitro. Affinity purification of solubilized trophozoites using the monoclonal antibody and electrophoresis yielded three glycoproteins with molecular masses of 150, 170, and 260 kDa, suggesting the existence of either a common epitope or the close association of these proteins. The 260-kDa fraction was identified as the well-known galactose (Gal)- and N-acetyl-D-galactosamine (GalNAc)-inhibitable lectin. The 150- and 170-kDa fractions seemed to exist as part of a 380-kDa native protein with an isoelectric point of pH 6.9. The N-terminal amino acid sequence of the 150-kDa protein was unique, indicating that the protein was not a degraded product of the 260-kDa lectin. By gel filtration, the 260-kDa lectin and the 150/170-kDa protein could be separated. When Chinese hamster ovary cells were pretreated with the fraction consisting of the 150/170-kDa protein the adherence of trophozoites to Chinese hamster ovary cells was competitively inhibited to a level equivalent to that observed for the 260-kDa lectin. The inhibitory effect was lost in the presence of Gal and GalNAc but was not influenced by the presence of glucose. These results demonstrate that the 150/170-kDa protein is a Gal/GalNAc-inhibitable lectin. The existence of a sugar-binding domain in the protein was confirmed by Gal-affinity chromatography.  相似文献   

19.
Galactosyltransferase, sialyltransferase, and fucosyltransferase were used to create a panel of complex oligosaccharides that possess multiple terminal sialyl-Le(x) (NeuAc alpha 2-3Gal[Fuc alpha 1-3] beta 1-4GlcNAc) and GalNAc-Le(x) (GalNAc[Fuc alpha 1-3]beta 1-4GlcNAc). The enzymatic synthesis of tyrosinamide biantennary, triantennary, and tetraantennary N-linked oligosaccharides bearing multiple terminal sialyl-Le(x) was accomplished on the 0.5 mumol scale and the purified products were characterized by electrospray MS and 1H NMR. Likewise, biantennary and triantennary tyrosinamide oligosaccharides bearing multiple terminal GalNAc-Le(x) determinants were synthesized and similarly characterized. The transfer kinetics of human milk alpha 3/4-fucosyltransferase were compared for biantennary oligosaccharide acceptor substrates possessing Gal beta 1-4GlcNAc, GalNAc beta 1-4GlcNAc, and NeuAc alpha 2-3Gal beta 1-4GlcNAc which established NeuAc alpha 2-3Gal beta 1-4GlcNAc as the most efficient acceptor substrate. The resulting complex oligosaccharides were chemically tethered through the tyrosinamide aglycone to the surface of liposomes containing phosphatidylthioethanol, resulting in the generation of glycoliposomes probe which will be useful to study relationships between binding affinity and the micro- and macro-clustering of selectin ligand.  相似文献   

20.
The binding of carbohydrates to the hemolytic lectin CEL-III isolated from the marine invertebrate Cucumaria echinata was studied. Equilibrium dialysis data suggest that CEL-III has two carbohydrate-binding sites with equal affinity. The binding of specific carbohydrates to CEL-III induces a decrease in the fluorescence intensity at 339 nm and the shift of the fluorescence emission maximum to a wavelength shorter by 3 nm, owing to the change in the environment of tryptophan. By analyzing the change in the fluorescence intensity at 339 nm as a function of the concentration of carbohydrates, the association constants for binding of individual carbohydrates to CEL-III were calculated. The results indicate that GalNAc, lactulose, and lactose are bound by CEL-III with fairly high affinity among the carbohydrates tested. The pH-dependence profile of the association constant of lactose suggests that CEL-III binds carbohydrates with highest affinity around pH 5.0. Modification of CEL-III with N-bromosuccinimide produces an oxidized derivative, in which four tryptophan residues/mol were oxidized and had no hemolytic activity. However, two out of these four tryptophans escaped from the modification in the presence of specific saccharides and the resulting derivative retained fairly high hemolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号