首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diamond tool has significant influences on the finished surface quality in fly cutting of potassium dihydrogen phosphate (KDP) crystals. In this work, the nanoindentation and dimensional analysis are employed to establish the material constitutive equation of KDP crystals, i.e., the variation curve of flow stress vs. plastic strain. As expected, a novel 3D finite element (FE) model is developed for diamond fly cutting of KDP crystals, and the generation of 3D surface topography is simulated by multi-run cutting calculations, in which the movements of diamond tool are configured to be identical to the actual feed rate and cutting velocity. Subsequently, the coordinates of the nodes on the topmost surface as freshly machined are collected to evaluate the surface roughness, which enables the detailed analyses of the effect of diamond tool geometries on the achieved surface roughness of KDP crystals. The results suggest an optimal selection of tool geometries, i.e. ?25° rake angle and 8° clearance angle. With the increment of tool nose radius, surface roughness decreases correspondingly. Moreover, the larger defect or sharpness of tool cutting edge produces the worse surface roughness. Diamond fly cutting experiments are carried out with different rake angles, in which the cutting parameters are the same as the values used in FE simulations. The measured surface roughness has a satisfied consistency with the simulated data, which demonstrates that the developed 3D FE cutting model and the related simulations are reliable.  相似文献   

2.
Ultra precision diamond cutting is a very efficient manufacturing method for optical parts such as HOE, Fresnel lenses, diffraction lenses, and others. During micro cutting, the rake angle is likely to become negative because the tool edge radius is considerably large compared to the sub-micrometer-order depth of cut. Depending on the ratio of the tool edge radius to the depth of cut, different micro-cutting mechanism modes appear. Therefore, the tool edge sharpness is the most important factor which affects the qualities of machined parts. That is why diamond, especially monocrystal diamond which has the sharpest edge among all other materials, is widely used in micro-cutting. The majar issue is regarding the minimum (critical) depth of cut needed to obtain continuous chips during the cutting process. In this paper, the micro machinability near the critical depth of cut is investigated in micro grooving with a diamond tool. The experimental results show the characteristics of micro-cutting in terms of cutting force ratio (Fx/Fy), chip shape, surface roughness, and surface hardening near the critical depth of cut.  相似文献   

3.
Fe-based amorphous alloy, a new-type material, was developed as a special-purpose welt overlay for remanufacture. It was deposited on the worn-out part for resuming and upgrading part performance. The microstructure characteristics of the overlay was characterized, including microstructure, phase composition, thermostability, and microhardness. In order to get a comprehensive insight to the machining process of amorphous overlay, this paper presents an experimental investigation into the effect of various machining parameters and tool geometry (Edge) on the surface roughness, tool wear, chip morphology, and surface damage. Comparing larger rake angle of 15°and smaller nose radius of 0.4 mm with 5° and 0.8 mm at the same cutting parameters, we found that larger rake angle of 15° and smaller nose radius of 0.4 mm increased the R a surface roughness parameter. In the tests, crater wear was not observed, and the friction and wear on the minor cutting edge wear were heavy due to the spring back of the machined surface. In brief,abrasion, adhesion, fatigue, and chipping are the main wear mechanism. As the feed rate reduced and the depth of cut increased (from feed rate?=?0.06 mm/rev and depth of cut?=?0.3 mm to feed rate?=?0.09 mm/rev and depth of cut?=?0.2 mm), a number of physical changes occurred in the chip including reduced distance between serrations, increased shear band angle, and changed chip morphology from spiral to ribbon shape. The results show that strain and strain rate rises in the chips’ inside with the increase in cutting temperature. When the thermal softening exceeded strain hardening, the shear resistance decreased rapidly. Thus, the free surface of the chip presents the nodular and lamella structure. It was noted that specimens generated by larger rake angle of 15° and smaller nose radius of 0.4 mm showed poor surface roughness as well as extensive surface damage.  相似文献   

4.
TOOL FORCE MODEL FOR DIAMOND TURNING   总被引:1,自引:0,他引:1  
A new tool force model to be presented is based upon process geometry and the characteristics of the force system, in which the forces acting on the tool rake face, the cutting edge rounding and the clearance face have been considered, and the size effect is accountable for the new model. It is desired that the model can be well applicable to conventional diamond turning and the model may be employed as a tool in the design of diamond tools. This approach is quite different from traditional investigations primarily based on empirical studies. As the depth of cut becomes the same order as the rounded cutting edge radius, sliding along the clearance face due to elastic recovery of workpiece material and plowing due to the rounded cutting edge may become important in micro-machining, the forces acting on the cutting edge rounding and the clearance face can not be neglected. For this reason, it is very important to understand the influence of some parameters on tool forces and develop a model of the relatio  相似文献   

5.
The cutting edge of glass as well as diamond knives was studied at high resolution using a scanning force microscope (SFM). The local shape of the cutting edge was estimated from single line profiles of the SFM topographs taking into account the exact shape of the probing tip estimated by a high‐resolution field emission scanning electron microscope (FESEM). The glass knives were prepared by ‘balanced breaking’. The radius of the investigated cutting edges was found to be 3.2–4.4 nm and 4.3–6.0 nm for the 35° and 45° diamond knife, respectively, and 3.4–4.3 nm for the glass knives. Besides the opening angle and the cutting edge radius, the friction of a knife during sectioning represents a significant factor influencing the quality of sections. Thus, the roughness of both the diamond clearance angle side and the back side was characterized as well. Corresponding RMS values of the roughness were found to be smaller on the back side (≈ 0.14 nm) than on the clearance angle side (≈ 0.26 nm).  相似文献   

6.
Molecular Dynamics (MD) simulations of nanometric cutting of single-crystal copper were conducted to predict cutting forces and investigate the mechanism of chip formation at the nano-level. The MD simulations were conducted at a conventional cutting speed of 5 m/s and different depths of cut (0.724–2.172 nm), and cutting forces and shear angle were predicted. The effect of tool rake angles and depths of cut on the mechanism of chip formation was investigated. Tools with different rake angles, namely 0°, 5°, 10°, 15°, 30°, and 45°, were used. It was found that the cutting force, thrust force, and the ratio of the thrust force to cutting force decrease with increasing rake angle. However, the ratio of the thrust force to the cutting force is found to be independent of the depth of cut. In addition, the chip thickness was found to decrease with an increase in rake angle. As a consequence, the cutting ratio and the shear angle increase as the rake angle increases. The dislocation and subsurface deformation in the workpiece material were observed in the cutting region near the tool rake face. The adhesion of copper atoms to the diamond tool was clearly seen. The same approach can be used to simulate micromachining by significantly increasing the number of atoms in the MD model to represent cutting depths in the order of microns.  相似文献   

7.
According to the hypothesis of ductile machining, brittle materials undergo a transition from brittle to ductile mode once a critical undeformed chip thickness is reached. Below this threshold, the energy required to propagate cracks is believed to be larger than the energy required for plastic deformation, so that plastic deformation is the predominant mechanism of material removal in machining these materials in this mode. An experimental study is conducted using diamond cutting for machining single crystal silicon. Analysis of the machined surfaces under a scanning electron microscope (SEM) and an atomic force microscope (AFM) identifies the brittle region and the ductile region. The study shows that the effect of the cutting edge radius possesses a critical importance in the cutting operation. Experimental results of taper cutting show a substantial difference in surface topography with diamond cutting tools of 0° rake angle and an extreme negative rake angle. Cutting with a diamond cutting tool of 0° rake angle could be in a ductile mode if the undeformed chip thickness is less than a critical value, while a ductile mode cutting using the latter tool could not be found in various undeformed chip thicknesses.  相似文献   

8.
Micro-milling is a promising approach to repair the micro-defects on the surface of KH2PO4 (KDP) crystal. The geometrical parameters of micro ball end mill will greatly influence the repairing process as a result of the soft brittle properties of KDP crystal. Two types of double-edged micro ball end mills were designed and a three-dimensional finite element (FE) model was established to simulate the micro milling process of KDP crystal, which was validated by the milling experiments. The rake angle of −45°, the relief angle of 45° and the cutting edge radius of 1.5–2 μm were suggested to be the optimal geometrical parameters, whereas the rake angle of −25° and the relief angle of 9° were optimal just for micro ball end mill of Type I, the configuration with the rake angles ranging from 0° to 35°, by fully considering the cutting force, and the stress–strain distribution over the entire tool and the cutting zone in the simulation. Moreover, the micro polycrystalline diamond (PCD) ball end mills adopting the obtained optimal parameters were fabricated by wire electro-discharge machining (WEDM) and grinding techniques, with the average surface roughness Ra of tool rake face and tool flank face ∼0.10 μm, and the cutting edge radius of the tool ∼1.6 μm. The influence of tool's geometrical parameters on the finished surface quality was verified by the cutting experiments, and the tool with symmetric structure was found to have a better cutting performance. The repairing outlines with Ra of 31.3 nm were processed by the self-fabricated tool, which could successfully hold the growth of unstable damage sites on KDP crystal.  相似文献   

9.
In this study, orthogonal cutting of SiCp/Al composites with a polycrystal diamond tool has been carried out. The influences of cutting velocity, cutting depth, and tool rake angle on the cutting force and edge defects near the exit of orthogonal cutting were analyzed in detail. The research results show that the influence of the cutting depth on cutting force is most obvious, and there is a close relationship between the cutting force and the size of edge defects. At the same time, the fractographs indicated that the brittle fracture mode corresponds to the dominant failure mode during machining of SiCp/Al composites with higher volume fraction and larger SiC particle. Therefore, in the precision and super-precision manufacturing of SiCp/Al composites, with a proper tool rake angle, adopting higher cutting velocity and lower cutting depth not only can reduce the cutting force effectively but also can ensure cutting edge quality.  相似文献   

10.
The reasons for chip deviation from the orthogonal direction in machining are (i) restricted cutting effect, (ii) nonzero inclination angle, and (iii) tool-nose radius. The present article has incorporated the concept of effective inclination angle in the models for predicting chip flow direction in oblique cutting. Model 1 takes into account the role of the effective principal cutting edge angle (as point function) and the concept of effective inclination angle has been incorporated in the model. Model 2 addresses the same roles but determined as path functions. Models 1 and 2 do not address the variation in the chip load along the width of cut. This has been addressed in Model 3 along with effective inclination angle. The models have been validated against the experimental data while turning two different medium carbon steels with uncoated carbide inserts over a wide domain of depth of cut, feed, cutting velocity, nose radius, rake angle, inclination angle and principal cutting edge angle. The major contribution of this work is the introduction of effective inclination angle along the effective cutting edge.  相似文献   

11.
Geometry of cutting edge has great influence on performance and reliability of modern precision cutting tools. In this study, two-dimensional finite element model of orthogonal cutting of Fe–Cr–Ni stainless steel has been built to optimize the geometric parameters of chamfered edge. A method to measure the chip curl radius has been proposed. The effect of cutting edge geometric parameters on tool stress and chip curl radius has been analyzed. Then, the chamfered edge parameters have been optimized based on numerical simulation results. It finds that, keeping the equal material removal rate, the optimal geometric parameters of chamfered edge for rough machining Fe–Cr–Ni stainless steel are that the rake angle is from 16° to 17°, and the chamfer length is from 60 to 70 μm. Small (large) rake angle combined with small (large) chamfer length is more reasonable to reduce the tool stress. When the length of land is approximately equal to undeformed chip thickness and the rake angle is larger than 15°, the chip curl radius is minimal. The groove type with large radio of width to depth should be used in the chip breaking based on the optimization results.  相似文献   

12.
超精密切削时刀具切削刃的作用机理分析   总被引:3,自引:0,他引:3  
分析了金刚石刀具切削刃的切削作用、脆性材料超精密切削时切屑形成机理;对金刚石刀具切削刃钝圆半径、切削厚度、切削角三者之间的关系进行了描述。结果表明:脆性材料可以实现塑性域超精密切削加工;控制切削参数可以加工出满足要求的表面粗糙度和表面波纹度,为生产实际提供可靠的工艺条件及技术参数。  相似文献   

13.
基于实验Inconel718正交切削有限元仿真分析   总被引:1,自引:0,他引:1  
为研究犁削效应和前刀面粘压对Inconel718切削过程的影响.基于正交切削实验建立Inconel718有限元切削模型,模型结果同实验值对比以验证模型可靠性.通过改变刀具圆角半径和负前角参数,提取并比较不同的切削力时域曲线和刀具温度,分析犁削效应和前刀面粘压.研究表明犁削效应提高进给力数值,刀具圆角半径由0变为5μm,Inconel718切削进给力均值提高7%:前刀面粘压提高刀具和切屑温度,有利于切屑分离.但刀具负前角为-20°,切削加工不稳定.  相似文献   

14.
In finish turning, the applied feedrate and depth of cut are generally very small. In some particular cases, such as the finishing of hardened steels, the feedrate and depth of cut are much smaller than tool nose radius. If a tool with a large tool nose radius and large negative rake angle is used in finish turning, the ploughing effect is pronounced and needs to be carefully addressed. Unfortunately, the ploughing effect has not yet been systematically considered in force modelling in shallow cuts with large negative rake angle and large nose radius tools in 3-D oblique cutting. In this study, in order to model the forces in such shallow cuts, first the chip formation forces are predicted by transforming the 3-D cutting geometry into an equivalent 2-D cutting geometry, then the ploughing effect mechanistic model is proposed to calculate the total 2-D cutting forces. Finally, the 3-D cutting forces are estimated by a geometric transformation. The proposed approach is verified in the turning of hardened 52100 steel, in which cutting conditions are typified as shallow cuts with negative rake angle and large nose radius tools. The workpiece material property of hardened 52100 steel is represented by the Johnson-Cook equation, which is determined from machining tests. The comparison between the experimental results and the model predictions is presented.  相似文献   

15.
In this paper, a molecular dynamic simulation study was performed to study 3D single-point turning of a monocrystalline copper workpiece with rigid diamond tools at nanometric scale. Morse potential energy function was applied to model the copper/diamond and copper/copper interactions. Two-groove cutting was employed to simulate the surface creation in 3D single-point turning operations. Multiple machining conditions were investigated by considering the effects of rake angle, machining speed, depth of cut, and feed rate. Not surprisingly, in machining both grooves, the tool forces increase with the increase of feed rate and depth of cut, as well as the use of a smaller rake angle. These general observations are consistent with the conventional metal machining at longer length scales. On the other hand, it was found that the increase of machining speed also significantly causes the rise of tool forces. Moreover, the stress and instantaneous temperature distributions in the workpiece were analyzed. It was discovered that for all conditions investigated, the equivalent stress and temperature distributions actually resemble these reported for conventional machining. All cutting parameters affect the magnitude and distribution of stresses to a certain extent, while the machining speed appears to be the dominant factor for the machining temperature.  相似文献   

16.
In this paper we present an experimental study on ultraprecision machining (UPM) of single crystal Ge using the μ-LAM process. The material is oriented with the cutting plane normal to the <111> direction. It is shown that increased hydrostatic pressures on the surface during cutting by increasing the tool radius and negative rake angle can aid in enhancing ductile material removal from the surface. It is shown that the cutting performance can be increased by approximately 400% using the optimal tool geometry. It is also shown that the optimal tooling geometry with a steep negative rake angle, i.e. −65°, is capable of producing repeatable surface form and finish over long cutting distances. Finally, it will be shown that the laser beam used for μ-LAM, with the right amount of power, produces surfaces that are under less post machining residual stresses.  相似文献   

17.
The plane-strain finite element method is developed and applied to model the orthogonal metal cutting of annealed low carbon steel with continuous chip formation. Four sets of simulation results for cutting with −2°, 0°, 5°, and 15° rake angle are summarized and compared to analyze the effects of rake angle in the cutting processes. The initial and deformed finite element meshes, as the cutting reaches steady-state condition, are first presented. Simulation results of the cutting forces and residual stresses, along with the X-ray diffraction measurements of the residual stresses generated using a worn cutting tool with 5° rake angle, are used to identify the influences of the rake angle and tool sharpness. Elements are selected to represent three sections along the shear and contact zones and under the cut surface. The normal and shear stresses, distributions of parameters along these three sections, and contours of temperature, plastic strain, and effective stress are then presented. Limitations of the finite element method for metal cutting simulation are discussed.  相似文献   

18.
高速车削镍基高温合金GH4169的切削力仿真研究   总被引:1,自引:0,他引:1  
基于Deform 3D仿真软件建立了GH4169高温合金高速车削的有限元模型,采用四因素三水平正交试验方法研究了切削用量和刀具几何参数对切削力的影响规律,并建立了切削力经验公式。研究结果表明:在高速车削GH4169的过程中,对切削力影响最大的参数是切削深度,其次是进给量和前角,最后是刀尖圆弧半径;切削力随切削深度和进给量的增大而增大,随前角的增大呈现先降低又升高的趋势,而刀尖圆弧半径增大时切削力变化不大;最佳参数组合为:进给量0.2mm/r,切削深度0.4mm,前角10°,刀尖圆弧半径0.2mm。  相似文献   

19.
In this paper, finite element (FE) simulation for high-speed milling of aluminum alloy was performed using a ductile fracture model with Mohr–Coulomb criterion proposed by Bai and Wierzbicki (BW). To verify the model, predicted cutting forces were compared to experimental results in the same cutting conditions. Then, further simulations were performed to estimate the cutting forces and chip shrinkage coefficients subjected to different cutting parameters such as cutting speeds, cutting depths, and clearance angles of a cutting tool. The obtained results were also used to determine optimal cutting parameters using the Taguchi method. The analysis of variance (ANOVA) was employed to investigate the influence percentage of each cutting parameter on cutting force and chip shrinkage coefficient. The simulation results showed that inclusion of strain rate in numerical model significantly improved the accuracy of estimated cutting force in comparison to experiment. The optimum values obtained for high-milling process were cutting speed 1000 m/min, cutting depth 1 mm, clearance angle 15°, and rake angle 4°.  相似文献   

20.
高精度金刚石刀具研磨关键技术研究   总被引:1,自引:0,他引:1  
金刚石刀具刃口锋利度对所加工零件的表面质量有着重要影响。通过确定合理的研磨设备结构和合理的研磨工艺参数,获得的刀具刃口锋利度从300 nm提高到了50nm,刀面表面粗糙度从15nm提高到了0.5nm,刀具刃口质量得到了明显改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号