首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a method for characterizing the bandgap narrowing and parasitic energy barrier in SiGe heterojunction bipolar transistors (HBTs), fabricated using a single-polysilicon self-aligned bipolar process. From a comprehensive study of the temperature dependence of the collector current, the bandgap narrowing in the base due to germanium has been dissociated from that due to the heavy dopant concentration. The same approach has been used to characterize the height and width of parasitic energy barriers which appear when boron out-diffusion from the SiGe base is present. The method has been applied to SiGe heterojunction bipolar transistors fabricated using a single polysilicon, self-aligned, bipolar process, as well as mesa transistors. The experimental results show that small geometry transistors have degraded collector currents due to boron out-diffusion around the perimeter of the emitter. This behavior has been explained by accelerated boron diffusion due to point defects generated during the extrinsic base implant. The values of undoped SiGe spacer thickness needed to suppress the parasitic energy barrier are described. Finally, high-frequency results are reported, which correlate the frequency transition to these parasitic energy barriers  相似文献   

2.
Reliability of microwave SiGe/Si heterojunction bipolar transistors   总被引:1,自引:0,他引:1  
The degradation behavior of NPN Si/SiGe/Si heterojunction bipolar transistors, grown by solid-source molecular beam epitaxy (MBE), has been studied by accelerated lifetime testing at different ambient temperatures. The degradations of the dc current gain and the microwave performance of the devices are explained in terms of recombination enhanced impurity diffusion (REID) of boron atoms from the base region and the subsequent formation of parasitic energy barriers at the base-emitter and base-collector junctions  相似文献   

3.
This letter investigates the effect of a 185 keV, 2.3 /spl times/ 10/sup 15/ cm/sup -2/ F/sup +/ implant on boron transient enhanced diffusion (TED) and boron thermal diffusion in SiGe by characterizing the diffusion of a boron marker layer in samples with and without a 288 keV, 6 /spl times/ 10/sup 13/ cm/sup -2/ P/sup +/ implant. In samples implanted with F/sup +/ only, the fluorine suppresses boron thermal diffusion by 58%. In samples given both P/sup +/ and F/sup +/ implants, the fluorine completely eliminates boron transient enhanced diffusion caused by the P/sup +/ implant and also significantly reduces boron thermal diffusion. SIMS profiles after anneal show a fluorine concentration in the SiGe layer that is approximately 8 /spl times/ higher than after implant, indicating that fluorine accumulates in the SiGe layer during anneal. A comparison with fluorine profiles in comparable silicon samples also shows that the fluorine concentration after anneal is dramatically higher in SiGe samples than in Si samples. This accumulation of fluorine in the SiGe layer during anneal will have major benefits for boron diffusion suppression in devices like SiGe HBTs, where boron must be kept within the SiGe layer.  相似文献   

4.
A simple experimental technique is presented that enables the accurate extraction of the collector-base resistance rμ that models the impact of neutral base recombination on the ac output resistance of bipolar transistors. Measurements of ratios of rμ to the output resistance ro arising from the Early effect for SiGe HBTs allows for the quantitative determination of the impact of neutral base recombination on analog circuits that are designed to have a high output resistance. It is found that SiGe HBT structures indicative of those currently being used commercially in advanced analog processes exhibit neutral base recombination that is significant enough to severely degrade the output resistance of analog circuits, even when the output transistors experience ac base voltage drive conditions. Finally, it is shown how extraction of the ratio of r μ to ro can be a useful tool to determine the impact of parasitic potential barriers formed by boron out-diffusion at the collector-base junction on device and analog circuit performance  相似文献   

5.
Anomalously high parasitic resistance is observed when SiN gate sidewall spacer is incorporated into sub-0.25-μm pMOSFET's. The parasitic resistance in p+ S/D extension region increases remarkably by decreasing BF2 ion implantation energy to lower than 10 keV. It is confirmed that low activation efficiency of boron in p+ extension is the reason for such high parasitic resistance. The reduction of activation efficiency of boron may result from hydrogen passivation of boron acceptor; Fourier transform infrared absorption (FT-IR) measurement suggests that diffused hydrogen from SIN into p+ extension region forms the silicon-hydrogen-boron complex. It is also found that the activation efficiency of boron correlates well both with implantation energy of BF2 and the amorphization rate of substrate. Therefore, in sub-0.25-μm era, the extra amorphization step is essential not only to form a shallow junction but also to enhance boron activation. Germanium preamorphization implantation (Ge PAI) is hence applied to p+ extension of 0.15 μm pMOSFET's. It is finally demonstrated that this Ge PAI process reduces the total parasitic resistance to improve the drain saturation current by up to 10%  相似文献   

6.
In silicon npn bipolar junction transistors grown on (100) oriented substrate, at base doping levels in excess of 1020 boron atoms/cm3, strain induced splitting of the normally sixfold degenerated conduction band minimum becomes important and needs to be considered in modeling of injection currents. The biaxial tensile strain, originating in the smaller covalent radius of boron compared to silicon, induces a lowering of two valleys with heavy effective mass in vertical direction whereas the remaining four valleys are raised in energy. Using a coupled set of equations for the electron gas systems in the twofold and fourfold degenerated valleys, emitter and collector current formulas are derived. In the relevant case of strong f-type intervalley scattering rates compared to Auger recombination rates (which holds at least up to about 1021 cm-3) collector currents are described by (VBC=0 V) jC=-e(Dn4n4,0+Dn2n2,0 )/w(eV(BE/V(th))-1) provided that the electron diffusion length is large compared to the base width w. Dn4 D n2, and n4,0, n2,0 are diffusion constants and equilibrium minority carrier concentrations in the two electron gas systems, respectively. In Si/SiGe heterojunction bipolar transistors the conduction band situation in the base is similar to that in extremely heavily boron doped (homojunction) base layers as presence of Ge also causes the conduction band minimum to split (splitting is, however, of opposite sign). Thus, the transport model discussed here applies also to that kind of device  相似文献   

7.
We present the first dc measurements of silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) operating in the liquid-helium temperature (LHeT=4.2 K) regime. The current gain of the self-aligned, UHV/CVD-grown SiGe HBT increases monotonically from 110 at 300 K to 1045 at 5.84 K, although parasitic base current leakage limits the useful operating current to above about 1.0 μA at 5.84 K. An aggressively designed base profile (peak NAB≈8×1018 cm -3) is used to suppress base freeze-out at LHeT (Rbi =18.3 kΩ/□ at 4.48 K). We have also identified a non-ideal minority carrier transport mechanism in the collector current at temperatures below 77 K (IC is not proportional to exp(qV BE/kT)) which is unaccounted for in conventional device theory. Preliminary calculations suggest that this phenomenon is due to trap-assisted carrier tunneling from the emitter to the collector through the base potential barrier  相似文献   

8.
We developed a transistor with a very thin base to improve the speed of the intrinsic bipolar transistor. The epitaxially grown base transistor, or EBT, consists of an in-situ boron-doped epitaxial base layer that is photochemically grown, Photoepitaxy, with a low growth temperature of about 650°C, enables us to fabricate a very thin heavily doped layer. Our EBT has a base 65 nm thick and a peak boron concentration of 1 × 1019/cm3. Compared with high-speed bipolar transistors reported to date, EBT's have half the base width and ten times the peak boron concentration. The maximum current gain was about 500. Despite the very thin base, the Early voltage was about 70 V because of the high boron concentration. The EBT is potentially capable of very high-speed operation if combined with a structure that minimizes parasitic capacitance.  相似文献   

9.
SiGe metal-semiconductor-metal photodetectors (MSM-PDs) with a thin amorphous silicon (a-Si:H) passivation layer have been fabricated by an ultrahigh-vacuum chemical vapor deposition (UHVCVD) system. It was found that the thin (30 nm) a-Si:H passivation layer could effectively suppress the dark current of SiGe MSM-PDs. As compared to the unpassivated devices, the dark current for devices with a-Si:H passivation layers was drastically reduced by 1.7 times 105, and the photo-to-dark current ratio was enhanced by 1.33 times 106. We attribute this result to the passivation effect of a-Si:H films on SiGe surfaces by hydrogen diffusion, which can compensate the dangling bonds on the SiGe surface.  相似文献   

10.
The bandgap engineering method using a SiGe source structure is presented as a means to suppress the floating-body effect in SOI MOSFET's. Experiments using Ge implantation are carried out to form a narrow-bandgapped SiGe layer in the source region. It has been confirmed that Ge-implanted SIMOX exhibited a 0.1 eV bandgap narrowing with a relatively low Ge-dosage of 1016 cm-2. The fabricated N-type SOI-MOSFET's exhibited suppressed parasitic bipolar effects, such as improvement of the drain breakdown voltage or latch voltage, and suppression of abnormal subthreshold slope. Advantages over other conventional methods are also discussed, indicating that the bandgap engineering provides a practical method to suppress the floating-body effect  相似文献   

11.
The authors report a three-order-of-magnitude reduction in parasitic tunneling current at heavily doped p+-n+ Si/Si and SiGe/Si junctions grown by rapid thermal epitaxial chemical vapor deposition (CVD) compared with previously reported results in Si junctions fabricated by ion implantation. These results demonstrate the high quality of the epitaxial interface. The low tunneling currents allow higher limits to transistor base and emitter doping levels, yielding higher gains, reduced bias resistances, and higher Early voltages for scaled bipolar devices as well as Si/SiGe/Si heterojunction bipolar transistors  相似文献   

12.
A record 210-GHz fT SiGe heterojunction bipolar transistor at a collector current density of 6-9 mA/μm2 is fabricated with a new nonself-aligned (NSA) structure based on 0.18 μm technology. This NSA structure has a low-complexity emitter and extrinsic base process which reduces overall thermal cycle and minimizes transient enhanced diffusion. A low-power performance has been achieved which requires only 1 mA collector current to reach 200-GHz fT. The performance is a result of narrow base width and reduced parasitics in the device. Detailed comparison is made to a 120-GHz self-aligned production device  相似文献   

13.
Enhancement-mode Si/SiGe n-type modulation-doped transistors with a 0.5-μm-length T-gate have been fabricated. Peak transconductances of 390 mS/mm at room temperature and 520 mS/mm at 77 K have been achieved. These high values are attributable to a combination of the high quality of the material used, having a room temperature mobility of 2600 cm2/V-s at an electron sheet concentration of 1.5×1012 cm2, and an optimized layer design that minimizes the parasitic series resistance and the gate-to-channel distance  相似文献   

14.
This paper reports on SiGe NPN HBTs with unity gain cutoff frequency (fT) of 207 GHz and an fMAX extrapolated from Mason's unilateral gain of 285 GHz. fMAX extrapolated from maximum available gain is 194 GHz. Transistors sized 0.12×2.5 μm2 have these characteristics at a linear current of 1.0 mA/μm (8.3 mA/μm2). Smaller transistors (0.12×0.5 μm2) have an fT of 180 GHz at 800 μA current. The devices have a pinched base sheet resistance of 2.5 kΩ/sq. and an open-base breakdown voltage BVCEO of 1.7 V. The improved performance is a result of a new self-aligned device structure that minimizes parasitic resistance and capacitance without affecting fT at small lateral dimensions  相似文献   

15.
We demonstrate peak fT and fmax of 50 GHz for heterojunction bipolar transistors (HBTs) with an oxygen concentration in the epitaxial SiGe base layer of about 1020 cm−3. These fT/fmax values are over 10 GHz higher than for identically processed HBTs with an O content of only 1018 cm−3. This is due to reduced transient enhanced diffusion of boron in the O-rich layers. However, the base carrier lifetimes are reduced by the high oxygen content. We show that ideal base current characteristics and a low 1/fnoise level can be obtained despite this effect by localizing the emitter-base space-charge region outside the O-rich layer.  相似文献   

16.
A study is made of noise in p- and n-channel transistors incorporating SiGe surface and buried channels, over the frequency range f=1 Hz–100 kHz. The gate oxide is grown by low temperature plasma oxidation. Surface n-channel devices are found to exhibit two noise components namely 1/f and generation–recombination (GR) noise. It is shown that the 1/f noise component is due to fluctuations of charge in slow oxide traps whilst bulk centers located in a thin layer of the semiconductor close to the channel, give rise to the GR noise component. The analysis of the noise data gives values for the density Dot of the oxide traps in the SiGe and Si nMOSFETs of the order 1.8×1012 and 2.5×1010 cm−2 (eV)−1, respectively. The density DGR of the bulk GR centres is equal to 3×1010 cm−2 in both the SiGe and Si devices. The electron and hole capture cross-sections for these centres as well as their energy level and their depth below the oxide/semiconductor interface are also the same in the devices of both types. This suggests that those GR centers are of the same nature in all devices studied. p-Channel devices show different behaviour with only a 1/f noise component apparent in the data over the same frequency range. Buried SiGe channel and Si control devices exhibit quite low and similar slow state densities of the order low to mid 1010 cm−2 (eV)−1 whereas surface p-channel devices show even higher slow state densities than n-channel counterparts. The Hooge noise characterized by the Hooge coefficient H=2×10−5 is also detected in some buried p-channel SiGe devices.  相似文献   

17.
Si1−xGex/Si heterostructures play a primary role in the Si-based fast electronics developments of today. In this work, we will present the experimental results of infrared spectroscopic ellipsometry (IRSE) for structural determination of the boron heavily doped SiGe/Si sample grown by ultra-high vacuum chemical vapor deposition (UHVCVD) (the Ge atomic percent, the thickness of SiGe film and boron concentration). Especially, the principle of boron concentration in p-type SiGe film layer determined by IRSE was elucidated in detail. In addition, in order to corroborate the validity of IRSE for determining dopant concentration, secondary ion mass spectroscopy (SIMS) experiment has also been carried out. The close experimental agreement between IRSE and SIMS demonstrate that IRSE as a contactless, and non-destructive technology can be used in-line tools in production used for measuring the Ge content, the thickness of SiGe layer and boron concentration in p-type dopant SiGe/Si heterostructure, which often used the base layer of SiGe hetero-junction bipolar transistor (HBT) devices.  相似文献   

18.
A technique for forming shallow boron-doped layers for channel doping using preamorphization (channel preamorphization) is described. An extremely shallow boron-doped layer for shallow channel doping has been formed using preamorphization and rapid thermal annealing. Boron peak concentration around the surface is 3.5×1018 cm -3, and the depth at which the boron concentration becomes 10 17 cm-3 is 450 Å. In contrast, the depth is as large as 900 Å for nonpreamorphized samples. It is found that the shallow boron-doped layer formation is made possible because enhanced diffusion arising from ion implantation damage as well as the channeling in boron ion implantation is suppressed by preamorphization. It is also found that preamorphization does not affect MOS capacitor characteristics so long as the amorphous/crystalline interface is sufficiently deep, which allows that channel preamorphization is readily applicable to channel doping in MOSFET fabrication. To substantiate the experimental results, buried-channel p-MOSFETs with a shallow boron counterdoped layer using channel preamorphization have been successfully fabricated. Channel preamorphization did not degrade carrier mobility and improved MOSFET characteristics in the sub-quarter-micrometer-gate-length region suppressing short-channel effects due to the shallower counterdoped boron profile. High-performance 0.2-μm-gate-length p-MOSFETs with good subthreshold characteristics have been fabricated  相似文献   

19.
Results of the drift hole mobility in strained and unstrained SiGe alloys are reported for Ge fractions varying from 0 to 30% and doping levels of 1015-1019 cm-3. The mobilities are calculated taking into account acoustic, optical, alloy, and ionized-impurity scattering. The mobilities are then compared with experimental results for a boron doping concentration of 2×1019 cm-3. Good agreement between experimental and theoretical values is obtained. The results show an increase in the mobility relative to that of silicon  相似文献   

20.
SiGe layers were formed in source regions of partially-depleted 0.25-μm SOI MOSFETs by Ge implantation, and the floating-body effect was investigated for this SiGe source structure. It is found that the increase of the Ge implantation dosage suppresses kinks in Id-Vd characteristics and that the kinks disappear for devices with a Ge dose of 3×1016 cm-2. The lowering of the drain breakdown voltage and the anomalous decrease of the subthreshold swing are also suppressed with this structure. It is confirmed that this suppression effect originates from the decrease of the current gain for source/channel/drain lateral bipolar transistors (LBJTs) with the SiGe source structure. The temperature dependence of the base current indicates that the decrease of the current gain is ascribed to the bandgap narrowing of the source region  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号