首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel multi‐nozzle bubble electrospinning apparatus, including spinning unit, metering pump, constant flow pump, metal funnel and yarn winder, was designed for the preparation of continuous twisted polyacrylonitrile nanofiber yarns, and the principle of nanofiber yarn spinning was studied. An innovative spinning unit consisting of nozzle and air chamber was used to improve the production of nanofibers. Double conjugate electrospinning was developed using two pairs of oppositely charged spinning units to neutralize the charges. The effects of applied voltage, air flow rate, overall solution flow rate and funnel rotary speed on the fiber diameter, production rate and mechanical properties of the nanofiber yarns were analyzed. Nanofibers could be aggregated stably and bundled continuously, then twisted into nanofiber yarns uniformly at an applied voltage of 34 kV, air flow rate of 1200 mL min?1 and overall solution flow rate of 32 mL h?1. With an increase in the funnel rotary speed, the twist angle of the nanofiber yarns gradually increased when the take‐up speed was constant. The yarn tensile strength and elongation at break showed an increasing trend with increasing twist angle. Nanofiber yarns obtained using this novel method could be produced at a rate from 2.189 to 3.227 g h?1 with yarn diameters ranging from 200 to 386 µm. Nanofiber yarns with a twist angle of 49.7° showed a tensile strength of 0.592 cN dtex?1 and an elongation at break of 65.7%. © 2013 Society of Chemical Industry  相似文献   

2.
Nanofiber yarns with twisted and continuous structures have potential applications in fabrication of complicated structures such as surgical suture yarns, artificial blood vessels, and tissue scaffolds. The objective of this article is to characterize the tensile fatigue behavior of continuous Polyamide 66 (PA66) nanofiber yarns produced by electrospinning with three different twist levels. Morphology and tensile properties of yarns were obtained under static tensile loading and after fatigue loading. Results showed that tensile properties and yarn diameter were dependent on the twist level. Yarns had nonlinear time‐independent stress–strain behavior under the monotonic loading rates between 10 and 50 mm/min. Applying cyclic loading also positively affected the tensile properties of nanofiber yarns and changed their stress–strain behavior. Fatigue loading increased the crystallinity and alignment of nanofibers within the yarn structure, which could be interpreted as improved tensile strength and elastic modulus. POLYM. ENG. SCI., 55:1805–1811, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
Continuous polyacrylonitrile nanofiber yarns were fabricated by the homemade multiple conjugate electrospinning apparatus, and the principle of yarn spinning was studied. The effects of the applied voltage, flow rate, spinning distance, and funnel rotary speed on the diameter and mechanical properties of nanofiber yarn were analyzed. The diameter of the nanofibers decreased with increasing applied voltage and the flow rate ratio of the positive and negative needles (FP/FN), whereas the diameter of nanofibers increased with increasing overall flow rate and needle distance between the positive and negative. Subsequently, the diameter of the yarns increased first and then decreased with increasing applied voltage, FP/FN, and needle distance. However, the diameters of the yarns increased dramatically and then remained stable with increasing overall flow rate. The nanofibers were stably aggregated and continuously bundled and then uniformly twisted into nanofiber yarns at an applied voltage of 20 kV, an overall flow rate of 6.4 mL/h, a needle distance of 18.5 cm, and an FP/FN value of 5:3. With increasing funnel rotary speed, the diameters of the nanofibers and yarns decreased, whereas the twist angle of the nanofiber yarns gradually enlarged. Meanwhile, an increase in the twist angle brought about an improvement in the yarn mechanical properties. Nanofiber yarns that prepared showed diameters between 70 and 216 μm. Nanofiber yarns with a twist angle of 65° showed a tensile strength of 50.71 MPa and an elongation of 43.56% at break, respectively. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40137.  相似文献   

4.
In this study PAN nanofibrous yarn was produced by two‐nozzle conjugated electrospinning method. The nanofibrous yarns were drawn continuously in boiling water with drawing ratios of 1, 2, 3, and 4. The morphology of drawn yarns was investigated by scanning electron microscopy and tested for tensile properties as well as untreated yarn. The results showed that the nanofiber alignment in the yarn axis direction, the tensile strength, and tensile modulus of yarn increases as a result of drawing while the tensile strain and work of rapture decrease. X‐ray diffraction patterns of the produced yarns were analyzed as well. It was found that crystallinity index increases as the draw ratio increases. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
The amount of ply twist required to bring the surface fibers of the strand parallel to ply yarn axis is half the single yarn twist and, is experimentally verified by viewing the multifilament yarns longitudinally under Scanning Electron Microscope. The effect of single yarn twist and ply to single yarn twist ratio on strength and elongation of two‐ply cotton yarn have been studied. As the single yarn twist increases the tensile strength of the ply yarns with different levels of ply to single yarn twist ratio increases and at 130–140% of normal single yarn twist level, the ply yarns attain almost the same strength. Rate of improvement in tensile strength of cotton two‐ply yarn with respect to single yarn twist is more than that with respect to ply twist. The effect of ply to single yarn and cable to ply yarn twist ratio on strength and elongation of ply and cable multifilament yarns have been studied. Tensile strength of ply and cable multifilament yarns do not vary with the change in ratio of ply to single yarn twist and cable to ply twist respectively, particularly when the resultant yarn is finer. The cosine of average filament inclination to the ply yarn axis and that to the cable yarn axis do not vary much with different levels of ply to single yarn twist ratio and cable to ply yarn twist ratio respectively. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2245–2252, 2005  相似文献   

6.
Electrospun fiber materials are of scientific interest for use in multiple application areas. Charged fiber structures show enhanced properties as desired for some of these applications. One factor influencing the charge on the fiber structure that has not been explored is fiber alignment. Electrospun fiber structures, such as membranes, typically consist of randomly oriented fibers. Structural properties of the membranes such as mechanical strength are known to be affected by the random orientation of the fibers. It is suspected that fiber orientation may also affect the charge capacity of charged fiber structures. A few approaches to form electrospun yarns have been reported. Some of these approaches can also cause fibers to preferentially align along the yarn axis instead of assembling into a random structure. In this work, a rotating metal cone was used to collect Poly(vinylidene fluoride) electrospun fibers from which stretched yarns were drawn and twisted into yarns. The alignment of the fibers in the yarns was controllable to a degree that allowed exploration of the effect of alignment on charge. Long continuous oriented or random yarns of relatively uniform thickness were produced at a rate of about 10 m/h. The yarns were polarized by methods of heating, stretching, and poling. The results show that the fiber yarn formation process endows more charges to the fibers compared to the normal fiber membrane electrospinning and post polarization. This provides a facile route for the preparation of enhanced charge-functionalized fiber structures for a wide range of applications.  相似文献   

7.
The small-angle X-ray scattering measurements during tensile deformation have been performed for studying the structure and mechanical property relationships of twisted carbon nanotube (CNT) yarns. The tensile strength distribution and the diameter changes during tensile deformation have also been measured. The orientation distribution of the CNTs in the yarn has been determined and its changes during tensile deformation have been related to the variation of the tensile modulus with the twist angle. The tensile modulus and Poisson’s ratio of the yarns decreased with increasing twist angle, whereas the tensile strength of the yarn showed a maximum at the twist angle of 25°. At this twist angle, the distribution width of the tensile strength was minimum indicating the higher uniformity of the yarn structure.  相似文献   

8.
Poly (l ‐lactide) (PLLA) fibrous yarns were prepared by electrospinning of polymer solutions in 2,2,2‐trifluoroethanol. Applying spinning from two oppositely charged needles the spontaneous formed triangle of fibers at a grounded substrate could be assembled into fibrous yarns using a device consisting of a take‐up roller and twister. The effect of processing parameters on the morphology, diameter and mechanical properties of PLLA yarns was investigated by the response surface methodology (RSM). This method allowed evaluating a quantitative relationship between polymer concentration, voltage, take‐up rate and distance between the needles' center and the take‐up unit on the properties of the electrospun fibers and yarns. It was found that at increasing concentrations up to 9 wt % uniform fibers were obtained with increasing mean diameters. Conversely, the fiber diameter decreased slightly when the applied voltage was increased. The take‐up rate had a significant influence on the yarn diameter, which increased as the take‐up rate decreased. The tensile strength and modulus of the yarns were correlated with these variables and it was found that the polymer concentration had the largest influence on the mechanical properties of the yarns. By applying the RSM, it was possible to obtain a relationship between processing parameters which are important in the fabrication of electrospun yarns. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41388.  相似文献   

9.
The changes in structure and mechanical properties of melt spun polypropylene filaments were determined as the filaments were successively (i) drawn, (ii) twisted, (iii) annealed, and (iv) untwisted. Filaments spun to two different melt draw down levels were studied. The effects of draw temperature and draw ratio, extent of twist, annealing temperature, and the extent of untwisting were examined. Melt spun and twisted filaments (draw ratio of 1) were also considered. Structural characterization techniques used in this study include wide angle (WAXS) and small angle (SAXS) diffraction, scanning electron microscopy (SEM), birefringence and density measurement. Drawing increased crystalline orientation and at low temperatures disrupted the monoclinic unit. cell existing in the melt spun fibers. The drawing produced considerable fibrillation under all conditions even when carried out at 120°C. The fibrillation quid void formation due to low temperature drawing was more pronounced. The variation of WAXS patterns and mechanical properties of twisted drawn filaments was interpreted by presuming that the fibrils act in a manner analogous to that of the filaments in a continuous filament twisted yarn. In the case of incompletely drawn filaments the effect of additional drawing occurring during twistin must be considered. Twisted fibers annealed at 150°C sowed a drastic reduction in tensile properties, while those annealed at 125°C did not set the twist and caused the fibers to tend to untwist. Annealing at 140°C appeared to give satisfactory heat setting. Annealing of cold drawn and cold drawn and twisted fibers increased the density, removed many defects and reformed a well defined monoclinic crystal structure and a lamellar morphology. Untwisting of heat set filaments tended to give back the properties of hot drawn fibers. In some cases, however, the opening of cracks was noted.  相似文献   

10.
Continuous yarns from electrospun fibers   总被引:2,自引:0,他引:2  
A technique for making continuous uniaxial fiber bundle yarns from electrospun fibers is described. The technique consists of spinning onto a water reservoir collector and drawing the resulting non-woven web of fibers across the water before collecting the resulting yarn. Yarns from electrospun fibers of poly(vinyl acetate), poly(vinylidene difluoride) and polyacrylonitrile are used to illustrate the process of yarn formation and fiber alignment within the yarn. A theoretical production rate of 180 m of yarn per hour for a single needle electrospinning setup makes the process suitable for lab-scale production of electrospun yarns.  相似文献   

11.
Zein and zein/poly‐L ‐lactide (PLLA) nanofiber yarns were prepared by conjugate electrospinning using coupled spinnerets applied with two high electrical voltages of opposite polarities in this article. Structure and morphology of zein yarns were investigated by SEM and X‐ray diffraction. The results showed that zein yarn consisted of large quantity of fibers with diameters ranging from several hundreds nanometers to a few microns, and zein concentration played a significant role on the diameter of nanofibers in yarns. To improve mechanical property of nanofiber yarns, PLLA was then incorporated with zein. Zein/PLLA composite nanofiber yarns conjugate electrospun from solution with concentration of 7.5% (zein, w/v)/7.5% (PLLA, w/v) exhibited tensile strength of 0.305 ± 0.014 cN/dtex. The composite yarns showed better nanofiber alignment along the longitudinal axis. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
研究了熔纺聚丙烯腈 (MPPAN )纤维的拉伸及热定型工艺 ,并应用 X光衍射、取向、应力 -应变等方法对拉伸丝及定型丝的结晶性能、机械性能和沸水收缩性进行了表征 ,结果表明 :两种 MPPA N纤维都可以进行热水拉伸 ,但需严格控制拉伸温度 ;纤维拉伸以后 ,结晶度和机械性能均得到提高 ;其中AN含量为 81.6 %的 MPPAN拉伸丝可在 14 0℃以下 (以 130℃为佳 )干热定型 ,定型丝的性能和定型方式有关。  相似文献   

13.
Higher ordered structures of nanofibers, including nanofiber‐based yarns and cables, have a variety of potential applications, including wearable health monitoring systems, artificial tendons, and medical sutures. In this study, twisted assemblies of polyacrylonitrile (PAN), polyvinylidene fluoride trifluoroethylene (PVDF‐TrFe), and polycaprolactone (PCL) nanofibers were fabricated via a modified electrospinning setup, consisting of a rotating cone‐shaped copper collector, two syringe pumps, and two high voltage power supplies. The fiber diameters and twist angles varied as a function of the rotary speed of the collector. Mechanical testing of the yarns revealed that PVDF‐TrFe and PCL yarns have a higher strain‐to‐failure than PAN yarns, reaching 307% for PCL nanoyarns. For the first time, the porosity of nanofiber yarns was studied as a function of twist angle, showing that PAN nanoyarns are more porous than PCL yarns. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44813.  相似文献   

14.
Little data exist on how twist changes the properties of high‐performance continuous fiber yarns. For this reason, a study was conducted to determine the influence of twist on the strength and stiffness of a variety of high‐performance continuous polymeric fiber yarns. The materials investigated include Kevlar 29®, Kevlar 49®, Kevlar 149®, Vectran HS®, Spectra 900®, and Technora®. Mechanical property tests demonstrated that the initial modulus of a yarn monotonically decreases with increasing twist. A model based on composite theory was developed to elucidate the decrease in the modulus as a function of both the degree of twist and the elastic constants of the fibers. The modulus values predicted by the model have good agreement with those measured by experiment. The radial shear modulus of the fiber, which is difficult to measure, can be derived from the regression parameter of experimental data by the use of the model. Such information should be useful for some specialized applications of fibers, for example, fiber‐reinforced composites. The experimental results show that the strength of these yarns can be improved by a slight twist. A high degree of twist damages the fibers and reduces the tensile strength of the yarn. The elongation to break of the yarns monotonically increases with the degree of twist. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1938–1949, 2000  相似文献   

15.
An electrospinning method to obtain well‐aligned self‐assembled PVDF fibers in the form of yarn structures is presented. Post‐treatments such as stretching at 100 °C and annealing improve the tensile modulus and strength of the fibers by 17 and 41%, respectively. The results reveal that post‐treatment on fiber yarns induce crystallinity and β‐crystalline phase formation, which in turn impart a noticeable effect on the strength and stiffness of the fibers. An ≈10% improvement in the ferroelectric β‐crystalline phase fraction is estimated for the post‐treated yarns. Such yarn structures with improved strength and ferroelectric β‐phase content can be useful for nanoscale and microscale electronic devices.

  相似文献   


16.
Poly(L ‐lactic acid) (PLA) filaments were spun by melt‐spinning at 500 and 1850 mm?1, and further drawn and heat‐set to modify the morphology of these PLA filaments. PLA yarns were characterized by wide‐angle X‐ray diffraction (WAXD) and sonic method. WAXD reveals that PLA yarns spun at 500 mm?1 are almost amorphous while the PLA filaments spun at 1850 mm?1 have about 6% crystallinity. This is different from PET filaments spun at the same speed that have almost no crystallinity. Both drawn‐ and heat‐set PLA filaments showed much higher crystallinity (60%) than do as‐spun fibers produced at 500 and 1850 mm?1 speed, which is also higher than the usual heat‐set PET yarns. It appears that crystalline orientation rapidly reaches a value in the order of 0.95 at 1850 mm?1 and that drawn‐ and heat‐set yarns have almost the same crystalline orientation values. Molecular orientation is relatively low for as‐spun PLA yarn, and molecular orientation increased to ~0.5 after drawing or heat–setting or both. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1210–1216, 2006  相似文献   

17.
Electrospun nanofibrous yarns of shape memory polyurethane (SMPU)-based nanofibers were successfully prepared. The electrospun yarns were analyzed to assess the dependence of mechanical and shape memory properties on the yarn twist angle. The yarn with a 60° twist angle has high compactness and density, leading to increased tensile strength, elastic modulus, and strain energy. In addition, this yarn shows a significant improvement in the shape memory recovery stress compared with the non-twisted SMPU nanofibers. Moreover, thermal stimuli allowed for the 60° twisted yarn to lift a load that is 103 times heavier than itself. This yarn had a shape recovery stress of 0.61 MPa and generated a 7.95 mJ recovery energy. The results suggest the electrospun yarns could be used as actuators and sensing devices in the medical and biological fields.  相似文献   

18.
The effects of fiber structure on the process of photodegradation are controversial in the field. We tested polypropylene fibers of various form for their effects on photodegradation. Fiber grade polypropylene granules were spun into partially oriented multifilament yarns at a spinning speed of 2000 m min?1. The yarns were drawn using a draw‐twist unit. Yarns were exposed to ultra‐violet radiations in a covered open air chamber for different periods of time under two different sources of emissions (UVA; λ > 300 nm and UVC; λ = 254 nm). The samples were examined by Fourier transform infrared spectroscopy, mechanical testing, differential scanning calorimetry, microscopy, and density measurements. In photodegradation process, the drawn filaments had a longer induction time than undrawn ones. The mechanical properties of the undrawn yarns deteriorate faster than the drawn yarns. During the early periods of degradation helical content increases considerably, while the density fluctuates and increases. The degradation rate under UVC radiation was faster than under UVA radiation because of the higher energy of the UVC radiation. The upper photostability of the drawn yarns compared to the undrawn ones was due to the higher crystalline fraction and greater molecular orientation in the drawn yarn. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45716.  相似文献   

19.
The effect of twist and solvent densification on the internal structure of carbon nanotube yarns was revealed using focused ion beam milling and related to yarn strength through tensile testing. Denser carbon nanotube yarns with smaller diameters were produced either through solvent densification or with increasing twist densities from 5 to ~15 turns/mm, but led to only minor improvement in yarn tenacity. At twist densities greater than ~15 turns/mm, a core-sheath structure developed and was correlated with a decline in strength. The implications of bonding between the nanotubes in the twisted yarn are briefly considered. These results have implications for the future development of high strength carbon nanotube yarn.  相似文献   

20.
The continuous nanofiber yarns of poly(L ‐lactide) (PLLA)/nano‐β‐tricalcium phosphate (n‐TCP) composite are prepared from oppositely charged electrospun nanofibers by conjugate electrospinning with coupled spinnerets. The morphology and mechanical properties of PLLA/n‐TCP nanofiber yarns are characterized by scanning electron microscope, transmission electron microscope, and electronic fiber strength tester. The results show that PLLA/n‐TCP nanofibers are aligned well along the longitudinal axis of the yarn, and the concentration of PLLA plays a significant role on the diameter of the nanofibers. The thicker yarn of PLLA/n‐TCP composite with the weight ratio of 10/1 has been produced by multiple conjugate electrospinning using three pairs of spinnerets, and the yarn has tensile strength of 0.31cN/dtex. A preliminary study of cell biocompatibility suggests that PLLA/n‐TCP nanofiber yarns may be useable scaffold materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号