首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of shape memory polyurethanes (SMPUs) was prepared from polycaprolactone diol (PCL) 4000, 1,4‐butanediol (BDO), dimethylol propionic acid (DMPA), triethylamine, and 4, 4′‐diphenylmethane diisocyanate (MDI), to which excess MDI or glycerin were added to obtain crosslinked shape memory polyurethanes. Their mechanical, thermomechanical, thermal and shape memory properties were investigated by using differential scanning calorimetry (DSC), Fourier‐transform (FT‐IR) spectroscopy, dynamic mechanical analysis (DMA) and tensile testing. The results showed that crosslinked SMPUs have better thermal and thermomechanical properties than those prepared from linear polyurethanes and display good shape memory effects. Copyright © 2005 Society of Chemical Industry  相似文献   

2.
Understanding the relationship between the number‐average molecular weight (Mn) and the shape memory behavior of polymers is crucial for a complete picture of their thermomechanical properties, and hence for the development of smart materials, and, in particular, in textile technology. We report here on the study of shape memory properties as a function of Mn of polymers. Shape memory polyurethanes (SMPUs) of different Mn were synthesized, with various catalyst contents or molar ratio(r = NCO/OH) in the composition. In particular, two types of SMPU, namely Tm and Tg types according to their switch temperature type, were synthesized to compare the influence of Mn on their shape memory behavior. X‐ray diffraction, differential scanning calorimetry, dynamic mechanical analysis, and shape memory behavior results for the SMPUs are presented. The results indicate that the melting temperature (Tm), the glass transition temperature (Tg), the crystallinity, and the crystallizability of the soft segment in SMPUs are influenced significantly by Mn, before reaching a critical limit around 200 000 g mol?1. Characterization of the shape memory effect in PU films suggests that the Tm‐type films generally show higher shape fixities than the Tg‐type films. In addition, this shape fixity decreases with increasing Mn in the Tg‐type SMPU, but the shape recovery increases with Mn in both types of SMPU. The shape recovery temperature, in contrast, decreases with Mn as suggested by the result of their thermal strain recovery. It is concluded that a higher molecular weight (Mn > 200 000 g mol?1) is a prerequisite for SMPUs to exhibit higher shape recovery at a particular temperature. Copyright © 2007 Society of Chemical Industry  相似文献   

3.
In this study, a series of shape memory polyurethanes (SMPUs) were synthesized successfully by the bulk polymerization method from liquefied 4,4′‐diphenylmethane diisocyanate (L‐MDI), 1,4‐butanediol (BDO) and polyethylene glycol (PEG). The influence of the hard segment content (HSC) on the structure, morphology, properties and biocompatibility of PEG based SMPUs (PEGSMPUs) was carefully investigated. The results show that a microphase separation structure composed of a semicrystalline soft phase and an amorphous hard phase is formed in the PEG6000/L‐MDI/BDO system. Crystallization of the PEG soft segment is influenced by the hard segments. The PEG semicrystalline soft phase serves as a reversible phase while the L‐MDI?BDO hard segment acts as physical netpoints. Finally, a cyclic tensile test shows that all PEGSMPUs have good shape recovery (e.g. above 80%), whereas good shape fixity can only be achieved when the HSC is less than 35 wt%. The Cell Counting Kit 8 assay also demonstrates that only PEGSMPUs containing less than 40 wt% HSC have low cytotoxicity. It is thus concluded that PEGSMPUs bearing both good shape memory effects and good biocompatibility can be used as shape memory materials for biomedical applications when the HSC is less than 35 wt%. © 2014 Society of Chemical Industry  相似文献   

4.
Linear shape memory polyurethanes based on poly(dl ‐lactic acid) (PDLLA) macrodiol (PDLLA‐SMPUs) have various advantages such as good processability, biodegradability, shape memory effect, and biocompatibility, yet the insufficient mechanical properties prevent their effective applications in bone repair. 2‐Ureido‐4[1H]‐pyrimidone (UPy) can form strong quadruple hydrogen bonding. Here, a new linear PDLLA‐SMPU containing pendant UPy units (UPy‐p‐PDLLA‐SMPU) is designed and synthesized. The pendant UPy units may dimerize to form physical crosslinking among UPy‐p‐PDLLA‐SMPU chains. As a result, UPy‐p‐PDLLA‐SMPU demonstrates both good processability and significantly higher mechanical properties than the corresponding linear PDLLA‐SMPU without pendant UPys. In addition, UPy‐p‐PDLLA‐SMPU shows excellent shape memory effect near body temperature, with a shape fixity ratio of up to 98.6% and a recovery ratio of up to 92.9%. This work provides a new strategy to design SMPUs integrating the merits of linear and crosslinked polyurethanes, and the obtained UPy‐p‐PDLLA‐SMPU is a promising material for bone tissue repair in view of the mechanical, thermal, and shape memory properties.  相似文献   

5.
Water vapour permeable polymeric thin films possess significant importance in miscellaneous applications such as packaging, medical devices, controlled‐release systems, electronics and biosensors. In this work, a series of shape memory polyurethanes (SMPUs) were synthesized by a two‐step pre‐polymerization technique with variations in hard to soft segments and molecular weight of macroglycol. DSC, Fourier transform infrared spectra, dynamic TGA and tensile testing were carried out to characterize and evaluate the properties of these synthesized SMPUs. The effect of the soft segment and the molecular weight of macroglycol on the thermal properties, mechanical properties and water vapour permeability of the synthesized SMPUs were investigated to achieve a good water vapour permeable membrane. We found that the synthesized SMPUs demonstrated a good water vapour transmission rate of over 1460 g m?2 day–1 as well as robust mechanical properties with tensile strength 19.8 MPa indicating a promising permeable polymeric thin film for many potential applications, especially as protective clothing. © 2018 Society of Chemical Industry  相似文献   

6.
Flexible shape memory polyurethanes (SMPUs) are the favorable candidates as a coating or substrate for wearable smart textiles, electronics, and biomedical applications. However, conventional SMPUs (e.g., 1,4 butanediol (BDO)‐based) are not suitable in these applications due to high rigidity, poor mechanical properties, low shape recovery, and high transition temperature. Herein, a polyethylenimine (PEI)‐based SMPU with low transition temperature and tailored properties are reported. The synthesized SMPU are characterized, and their properties are compared with BDO‐SMPUs. The chemical structure of PEI is explored to improve thermal and mechanical properties and to assess their effect on shape memory behavior. The bulky nature of PEI plays a critical role in lowering transition temperature and introduces flexibility in the structure at room temperature. A drop in Young's modulus is found from 13.6 MPa in BDO‐SMPU to 6.2 MPa in PEI‐SMPU. Simultaneously, tensile strength is increased from 3.77 MPa in BDO‐SMPU to 11.85 MPa in PEI‐SMPU. Owing to the improved mechanical properties in PEI‐SMPU, 100% shape recovery is observed, which displays a reproducible trend in ten repetitive cycles due to the presence of reversible physical crosslinks. Therefore, it is envisioned that this can serve as a potential shape memory material in smart wearable technologies.  相似文献   

7.
形状记忆聚氨酯的结构与性能研究   总被引:4,自引:1,他引:4  
以2,4-甲苯二异氰酸酯、不同相对分子质量的聚己二酸丁二醇酯(PBAG)和1,4-丁二醇为原料合成了一系列聚酯型聚氨酯弹性体。发现由相对分子质量为3000和5000的PBAG所合成的聚氨酯弹性体具有良好的形状记忆功能。通过DSC、弯曲试验和力学性能测试研究了形状记忆聚氨酯的性能,发现软段高度结晶和硬段聚集形成硬段微区是使聚氨酯具有较好形状记忆功能的必要条件。  相似文献   

8.
The response of synthesized shape memory segmented polyurethanes (PUs) was affected by the addition of cellulose nanocrystals, as well as by the various conditions selected to carry out thermomechanical cyclic tests. The PUs were synthesized from an α‐hydro‐ω‐hydroxy‐poly(ethylene oxide), tolylene‐2,4‐diisocyanate and 1,4‐butanediol as chain extender. Nanocomposites were prepared by mixing a suspension of cellulose nanocrystals in N,N‐dimethylformamide with the thermoplastic PU dissolved in the same organic solvent. The thermal properties of the neat PU and resulting composites were examined using differential scanning calorimetry. It was found that cellulose addition increases the PU soft segment melting and crystallization temperatures and the degree of crystallinity of this phase. Shape memory behavior was studied using cyclic thermal tensile tests. Both neat PU and composites exhibit shape memory properties, with fixity and recovery values that depend on heating temperature, imposed deformation, deformation rate and nanofiller addition. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
Lateral flexible linking of shape memory polyurethane (SMPU) by a polyethyleneglycol (PEG) linker through the allophanate linking method was studied, while adjusting the soft segment content and PEG length. The SMPU was composed of 4,4′‐methylenebis(phenylisocyanate) (MDI), poly(tetramethyleneglycol) (PTMG), 1,4‐butanediol (BD), and PEG‐200 as a linker. A second MDI was used to connect the carbamate group of the SMPU chain and PEG. The impact of soft segment content and PEG length on the mechanical properties and shape recovery of two series of SMPU were compared. In the best case, a 545% increase in maximum stress compared to a linear polymer was attained. The flexibly crosslinked SMPUs behave similarly to natural rubber in their stress–strain curve, but their tensile mechanical properties surpassed those of natural rubber. Shape recovery went up to 96%, which is among the best SMPUs tested so far, and shape recovery remained above 90% after four cyclic tests. The extraordinary shape memory results are analyzed and discussed together with DSC and IR data. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Shape memory polyurethanes (SMPUs) have generated great attention because of their unique properties. These properties are result of a particular molecular structure consisting of flexible molecular chains with low glass transition temperatures alternating with hard urethane segments. In this field, bisphenol A (BA) has been used for a long time as chain extender due to the good properties of the obtained SPMU materials. Nevertheless, the high toxicity of this compound has caused a high decrease on its use. For this reason, it has been selected a lower toxicity compound, bisphenol A ethoxylate (BAE). In this work, it is described a new SMPUs based on BAE and the influence of the hard segment on the thermo-mechanical properties and shape memory capacity. For that, both the proportion of the components and the diisocyanate employed (2,4-toluene diisocyanate (TDI), 4,4′-methylene bis(phenylisocyanate) (MDI) or a TDI/MDI mixture) have been modified. Then, depending on the molecular architecture achieved, the polyurethanes present different properties, which were studied by different techniques, such as thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic-mechanical thermal analysis (DMTA). It has been observed that glass transition temperature (Tg) increases as the hard phase content in the PU samples increases. In addition, Tg-MDI > Tg-MDI-TDI > Tg-TDI, so it is possible to control the Tg of the material, that is, shape memory transition temperature varying the diisocyanate. Finally, the shape memory capacity of the PUs was evaluated by thermo-mechanical analysis (TMA). All the synthesized PUs have shown good shape memory effect with fixation ratios up to 80% and recovery ratios close to 100%.  相似文献   

11.
We synthesized series of shape memory polyurethanes with amorphous reversible phase (Tg‐SMPUs) and systematically studied their microphase structure and shape memory properties. The Tg‐SMPUs having no or less hard phase showed lower shape recovery. When the volume fraction of hard phase was in the range of 20–30%, the Tg‐SMPUs exhibited the highest shape recovery. As the fraction of hard phase increased further the shape recovery decreased, because more polymer components with higher glass transition temperatures (Tgs) would participate in strain storage. For the Tg‐SMPUs having similar Tgs, those polymers having higher volume fraction of hard phase exhibited higher shape fixity, broader shape recovery region, and larger recovery stress. Increasing deformation strain could raise shape fixity and recovery stress but broaden shape recovery region. The highest recovery stress of a material could be achieved when the deformation occurred at its glass transition temperature below which decreasing deformation temperature could not increase recovery stress further. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

12.
Various segmented polyurethanes of different soft segment structure with hard segment content of about 50 wt% were prepared from 4,4′‐diphenylmethane diisocyanate (MDI), 1,4‐butanediol and different polyols with a Mn of 2000 by a one‐shot, hand‐cast bulk polymerization method. The polyols used were a poly(tetramethylene ether)glycol, a poly(tetramethylene adipate)glycol, a polycaprolactonediol and two polycarbonatediols. The segmented polyurethanes were characterized by gel permeation chromatography (GPC), UV‐visible spectrometry, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X‐ray diffraction, and their tensile properties and Shore A hardness were determined. The DSC and DMA data indicate that the miscibility between the soft segments and the hard segments of the segmented polyurethanes is dependent on the type of the soft segment, and follows the order: polycarbonate segments > polyester segments > polyether segments. The miscibility between the soft segments and the hard segments plays an important role in determining the transparency of the segmented polyurethanes. As the miscibility increases, the transparency of the segmented polyurethanes increases accordingly. The segmented polyurethanes exhibit high elongation and show ductile behavior. The tensile properties are also affected by the type of the soft segment to some extent. POLYM. ENG. SCI., 47:695–701, 2007. © 2007 Society of Plastics Engineers.  相似文献   

13.
采用聚己二酸丁二醇酯(PBA)、异佛尔酮二异氰酸酯(IPDI)、二羟甲基丙酸(DMPA)、三乙胺(TEA)、乙二胺(EDA)等单体,通过自乳化法合成了聚酯型热致形状记忆水性聚氨酯(TSMWPU)。利用偏光显微镜(POM)、差示扫描量热仪(DSC)、动态黏弹谱仪(DMA)和形状记忆性能分析等手段,探讨了不同分子量的PBA,以及不同异氰酸酯基与羟基的摩尔比(NCO/OH)对TSMWPU的结晶性能和形状记忆性能的影响。结果表明;增加PBA分子量,有利于软段结晶,从而提高TSMWPU的形状记忆性能;而增加NCO/OH值,则抑制了软段结晶,进而导致TSMWPU的形状记忆性能下降。  相似文献   

14.
A series of liquefied‐MDI‐based polyurethanes having shape memory behavior, with various soft segments, chain extenders, and micro‐phase separation promoters were synthesized. Their morphology and properties were investigated in terms of thermal properties, dynamic mechanical properties, and shape recovery behavior. The results indicate that the soft segment formed with longer chain segment incline to crystallize during the cooling scans and the resulting SMPU have the higher crystallinity. Meanwhile, the chain extenders, which can enhance the polarity of hard segment, incline to have excellent shape memory properties with bigger storage modulus in rubbery state too. It was also found that the micro‐phase separation promoters have great influence on the shape memory behavior due to the enhancement of micro‐phase separation of SMPU. Furthermore, it was proved again that SMPU with longer soft segment and lower hard segment contents usually showed good shape memory behavior. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

15.
Shape memory composites of hyperbranched polyurethane (HBPU) and acid‐treated multi‐walled carbon nanotubes (MWNTs) were prepared using an in situ polymerization method. HBPUs with different hard segments contents were synthesized via the A2 + B3 approach using poly(ethylene glycol) (PEG) as a soft segment, 4,4′‐methylene bis(phenylisocynate), castor oil, and 1,4‐butanediol as hard segment. Compared to HBPU, the HBPU/MWNT composites showed faster shape recovery and double the shape recovery stress in the thermomechanical shape memory test, which was dependent on the MWNTs content and HBPU hard segment content. The water‐responsive shape memory effect of HBPU/MWNT composites was considered to result from the combined contribution of hydrophilic PEG and well dispersed MWNTs in highly branched HBPU molecules. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
High‐performance shape‐memory polyurethane block copolymers, prepared with two types of poly(tetramethylene glycol) (PTMG) used as soft segments, were investigated for their mechanical properties. Copolymers with a random or block soft‐segment arrangement had higher stresses at break and elongations at break than those with only one kind of PTMG. Random copolymers with fewer interchain interactions showed higher elongation than block copolymers. All the copolymers had shape‐recovery ratios higher than 80%. In dynamic mechanical testing, the glass‐transition behavior clearly depended on the soft‐segment arrangement: random copolymers had only one glass‐transition peak, whereas block copolymers showed two separate glass‐transition peaks. Overall, the control of the soft‐segment arrangement plays a vital role in the development of high‐performance shape‐memory polyurethane. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2410–2415, 2004  相似文献   

17.
Shape memory polymers have been much researched in recent years. In the work reported, moisture‐sensitive shape memory effects (SMEs) of novel pyridine‐containing shape memory polyurethanes (Py‐SMPUs) were investigated systematically. The results show that the strain recovery start immersion time (ts), strain recovery immersion time (tr) and final strain recovery immersion time (te) are prolonged with a decrease of relative humidity as well as a decrease of temperature. The final strain recovery decreases with a decrease of relative humidity as well as an increase of temperature. The key component affecting the moisture‐sensitive SME is the N,N‐bis(2‐hydroxyethyl)isonicotinamide (BINA) unit. The lower limit of BINA content for Py‐SMPUs to exhibit a good moisture‐sensitive SME is 30 wt%. The addition of diphenylmethane diisocyanate (MDI) and 1,4‐butanediol (BDO) enhances the moisture‐sensitive shape recovery. The final shape recovery decreases with a decrease of BINA content or an increase of MDI–BDO content. In addition, ts, tr and te become shorter in the Py‐SMPUs with higher BINA content or with lower MDI‐BDO content. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
Shape memory polyurethanes (SMPUs) have been synthesised via a novel synthetic methodology, resulting in an improvement of the phase separation in the multi-block structure of the polyurethane and in its shape memory properties. ABA block copolymers based on semi-crystalline poly(-caprolactone) and amorphous poly(propylene oxide) (PPO) were used as precursor for the SMPUs. For their synthesis, poly(-caprolactone) diols have been converted into isocyanate end-capped prepolymers by using a mixture of 3(4) isocyanato-1-methyl-cyclohexylisocyanate isomers, after which a coupling with low-Tg poly(propylene oxide) oligomers is done. The shape memory polymers are obtained by reaction of the ABA block copolymers with hexamethylenediisocyanate and 1,4-butanediol as chain extender. Using this new strategy, a flexible segment (PPO) was introduced between the hard and the switching segments of the SMPU. For comparison, SMPUs without flexible segment have also been prepared with the conventional synthetic route. DSC, isostrain experiments and cyclic shape memory tests revealed narrower switching temperatures for the SMPUs including a flexible segment.  相似文献   

19.
The structure‐property relationship of L ‐tyrosine‐based polyurethanes was demonstrated by using different polyols and diisocyanates. L ‐tyrosine‐based chain extender, desaminotyrosyl tyrosine hexyl ester (DTH), was used to synthesize a series of polyurethanes. Polyethylene glycol (PEG) or poly caprolactone diol (PCL) was used as the soft segment and hexamethylene diisocyanate (HDI) or dicyclohexylmethane 4,4′‐diisocyanate (HMDI) was used with DTH as the hard segment. The polyurethanes were characterized to investigate the effect of structure on different polyurethane properties. From FTIR and DSC, these polyurethanes exhibit a wide range of morphology from phase‐mixed to phase‐separated structure. The decreasing molecular weight of the PEG soft segment leads to relatively more phase mixed morphology whereas for PCL‐based polyurethanes the extent of phase mixing is less with decreasing PCL molecular weight. Results show that PCL‐based polyurethanes are mechanically stronger than PEG‐based polyurethanes but PCL‐based polyurethanes degrade slower and absorb less water compared with PEG‐based polyurethanes. The HMDI‐based polyurethanes are less crystalline and comparatively more hydrophobic than HDI‐based polyurethanes. The characterization results show that the polyurethane properties are directly related to the structure and can be varied easily for a different set of properties that are pertinent for biomaterial applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
In this study, a series of shape‐memory polyurethanes were prepared from polycarbonate diol (PCDL) with a molecular weight of 2000, trimethylol propane, and isophorone diisocyanate (IPDI). The properties of crosslinked poly(carbonate urethane) (PCU) networks with various compositions were investigated. The chemical structures and thermal properties were determined with Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. FTIR analysis indicated that PCU had the structures of IPDI and PCDL and the amido formyl ester in polyurethanes. The gel content of PCU showed that PCU could be effectively formed as crosslinked polyurethane networks. The glass‐transition temperatures of the PCU networks increased slightly with decreasing soft‐segment content in the networks. The values of Young's modulus in the networks at 25°C increased with decreasing soft‐segment content, whereas the tensile stress and breaking elongation decreased significantly. PCU showed shape‐memory effects with a high strain fixity rate. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号