共查询到20条相似文献,搜索用时 25 毫秒
1.
Dong‐Guk Yu Jeong Ho An Jin Young Bae Seong Deok Ahn Seung‐Youl Kang Kyung Soo Suh 《应用聚合物科学杂志》2005,97(1):72-79
Titanium dioxide core and polymer shell composite poly(methyl methacrylate‐co‐n‐butyl acrylate‐co‐methacrylic acid) [P(MMA‐BA‐MAA)] particles were prepared by emulsion copolymerization. The stability of dispersions of TiO2 particles in aqueous solution was investigated. The addition of an ionic surfactant, sodium lauryl sulfate, which can be absorbed strongly at the TiO2/aqueous interface, increases the stability of the TiO2 dispersion effectively by increasing the absolute value of the ζ potential of the TiO2 particles. The adsorption of the nonionic surfactant, Triton X‐100, on the surface of TiO2 particles is less than that of the ionic surfactant. Fourier transform IR spectroscopy was used to measure the content of MAA composite particles. Dynamic light scattering characterized the composite particle size and size distribution. The field‐emission scanning electron microscopy results for the composite particles showed a regular spherical shape, and no bare TiO2 was detected on the entire surface of the samples. The composite particles that were produced showed good spectral reflectance compared to bare TiO2. Thermogravimetric analysis results indicated the encapsulated TiO2 and estimated density of composite particles. There was up to 78.9% encapsulated TiO2 and the density ranged from 1.76 to 1.94 g/cm3. The estimated density of the composite particles is suitable at 1.73 g/cm3, which is due to density matching with the suspending fluid. The sedimentation experiment indicates that reducing the density mismatch between the composite particles and suspending fluid may enhance the stability. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 72–79, 2005 相似文献
2.
Two latices—the poly(dimethylsiloxane) (PDMS)/poly(methyl methacrylate‐co‐butyl acrylate‐co‐methacrylic acid) system (PA latex) and the PDMS/poly(vinyl acetate‐co‐butyl acrylate) system (PB latex)—were prepared by seeded emulsion polymerization, and PA/PB complex latices were obtained through the interparticle complexation of the PA latex with the PB latex. In addition, for the further study of the interparticle complexation of the PA latex with the PB latex, copolymer latices [PDMS/methyl methacrylate‐co‐butyl acrylate‐co‐vinyl acetate‐co‐methacrylic acid) (PC)] were prepared according to the monomer recipe of the complex latices and the polymerization process of the component latices. The properties of the obtained polymer latices and complex latices were investigated with surface‐tension, contact‐angle, and viscosity measurements. The mechanical properties of the coatings obtained from the latices were investigated with tensile‐strength measurements. The results showed that, in comparison with the two component latices (PA latex and PB latex) and the corresponding copolymer latices (PC latices), the PA/PB complex latices had lower surface tension, lower viscosities, and better wettability to different substrates. The tensile strengths of the coatings obtained from the complex latices were higher than the tensile strengths of the coatings from the two component latices and copolymer latices. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2522–2527, 2004 相似文献
3.
Synthesis of poly(butyl acrylate‐co‐methyl methacrylate)/montmorillonite waterborne nanocomposite via semibatch emulsion polymerization 下载免费PDF全文
Poly(butyl acrylate‐co‐methyl methacrylate)‐montmorillonite (MMT) waterborne nanocomposites were successfully synthesized by semibatch emulsion polymerization. The syntheses of the nanocomposites were performed in presence of sodium montmorillonite (Na‐MMT) and organically modified montmorillonite (O‐MMT). O‐MMT was used directly after the modification of Na‐MMT with dimethyl dioctadecyl ammonium chloride. Both Na‐MMT and O‐MMT were sonified to obtain nanocomposites with 47 wt % solids and 3 wt % Na‐MMT or O‐MMT content. Average particle sizes of Na‐MMT nanocomposites were measured as 110–150 nm while O‐MMT nanocomposites were measured as 200–350 nm. Both Na‐MMT and O‐MMT increased thermal, mechanical, and barrier properties (water vapor and oxygen permeability) of the pristine copolymer explicitly. X‐ray diffraction and transmission electron microscope studies show that exfoliated morphology was obtained. The gloss values of O‐MMT nanocomposites were found to be higher than that of the pristine copolymer. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42373. 相似文献
4.
Poly(butyl acrylate‐g‐styrene) graft copolymers were prepared by free‐radical polymerization using a polystyrene macromonomer carrying a methacryloyloxy group at the chain end and they were characterized by size‐exclusion chromatography, and Fourier transform infrared spectroscopy. Glass transition temperatures and degradation behavior were determined by thermal analysis. Only a single glass transition temperature was observed for the resulting graft copolymers, indicating the miscibility between the poly(styrene) phase and poly(butyl acrylate) (pBA) phase in the graft copolymer. The incorporation of polystyrene segments in the graft copolymer improved the thermal stability of pBA and enhanced the apparent activation energy for the thermal degradation of pBA. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 783–789, 2001 相似文献
5.
Crosslinked poly(butyl acrylate‐co‐2‐ethylhexyl acrylate) [P(BA–EHA)] latex was synthesized by seeded emulsion polymerization. P(BA–EHA)/poly(vinyl chloride) (PVC) composite latex was prepared using P(BA–EHA) latex as the seed. The effects of the amount of P(BA–EHA) on the latex particle diameters and mechanical properties of the materials are discussed. The grafting efficiency (GE) of P(BA–EHA)‐grafted vinyl chloride (VC) in the synthesized resin was investigated, and the GE increased with an increasing P(BA–EHA)/VC ratio. The morphology of P(BA–EHA)/PVC was characterized using TEM, SEM, and DMA. TEM indicated that the particles of the P(BA–EHA)/PVC composite latex have a clear core–shell structure. DMA illustrated that the compatibility between P(BA–EHA) and PVC was well improved. With an increasing P(BA–EHA) content, the loss peak in the low‐temperature range became stronger than that of pure PVC, and the maximum values of the loss peaks gradually shifted to higher temperature. SEM showed that the fractured surface of the composite sample exhibited better toughness of the material. The notched impact strength of the material with 4.2 wt % P(BA–EHA) was 11 times that of PVC. TEM showed that P(BA–EHA) was uniformly dispersed in the PVC matrix and that the interface between the two phases was indistinct. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 643–649, 2003 相似文献
6.
Seeded preswelling emulsion polymerization was carried out by using monodispersed poly(4‐vinylpyridine‐co‐butyl acrylate) [P(4VP‐BA)] particles as the seed, and styrene and butyl acrylate as the second‐stage monomers under different polymerization conditions, to obtain hemispherical polystyrene (PST)‐rich–P4VP‐rich microspheres. Prior to polymerization, toluene was added into the preswelling system together with the second‐stage monomers. It was found that, with the increase of the amount of toluene, the particle morphology showed a tendency toward desirable hemispherical structure, and the colloidal stability of composite latex was improved. When the weight ratio of toluene/seed latex was increased up to 7.5/40 (g/g), the stable hemispherical latex could be obtained. However, when toluene was not added, the coagulum formed on the wall of the reactor during polymerization, and the composite particles with multiple surface domains (such as sandwich‐like, popcorn‐like) were formed. In addition, the final morphology of composite particles was influenced by the polarity of the seed crosslinker and the hydrophilicity of the second‐stage initiator, which could affect the mobility of poly(styrene‐co‐butyl acrylate) [P(ST‐BA)] chains. The morphology development during the polymerization was investigated in detail, and a schematic model was derived to depict the formation mechanism of hemispherical P(4VP‐BA)/P(ST‐BA) composite microspheres. The results revealed that the mobility of the P(ST‐BA) chains influenced the diffusion of the P(ST‐BA) domains on the surface of the P(4VP‐BA) matrix. When the mobility of the P(ST‐BA) chains allowed small‐size P(ST‐BA) domains to coalesce into one larger domain, complete phase‐separated morphology (hemisphere) could be achieved. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3811–3821, 2003 相似文献
7.
We have employed steady sate fluorescence (SSF) and UV‐visible (UVV) techniques to determine the film formation behavior of latex blends. Blend films were prepared from mixtures of a high‐Tg pyrene (P) labeled polystyrene (PS) latex and a low‐Tg copolymer of poly(butyl acrylate‐co‐methyl methacrylate) (BuA/MMA4). Eleven different blend films were prepared in various hard/soft latex compositions at room temperature and annealed at elevated temperatures above glass‐transition (Tg) temperature of polystyerene for 10 min. Fluorescence intensity (IP) from P was measured after each annealing step to monitor the stages of film formation. The evolution of transparency of latex films was monitored using photon transmission intensity, Itr. Film morphologies were examined by atomic force microscopy (AFM). A significant change occurs in both IP and Itr intensities at a certain critical weight fraction of hard latex (Rc = 0.3). Above Rc, two distinct film formation stages, which are named as void closure and interdiffusion processes, were seen in fluorescence data. Transparency of the films was decreased with decreasing PS content, indicating that a phase separation process occurs between PS and BuA/MMA4 phases by thermal treatment, which results in turbid films. However, below Rc, no change was observed in IP and Itr upon annealing, whereas transparency increased overall with increasing BuA/MMA4 ratio. We explained this result as the phase separation process between PS and BuA/MMA4 blends. These results were also confirmed by AFM pictures. Film formation stages above Rc were modeled and related activation energies were calculated. POLYM. COMPOS., 27:431–442, 2006. © 2006 Society of Plastics Engineers 相似文献
8.
Suspension polymerization expands the study of controlled radical polymerization to high conversions and is known as a method to synthesize polymers with high molecular weights. The radical block copolymerizations of styrene (S) and acrylonitrile (AN) or butyl methacrylate (BUMA) controlled by 2,2,6,6‐tetramethylpiperidine‐N‐oxyl (TEMPO) was performed in an oil/water pressure reactor system at a temperature of 125°C. TEMPO‐terminated styrene homopolymer was employed as macroinitiator. The systems were examined by varying the composition of the monomer mixture at a constant reaction time, as well as by varying the reaction time for a characteristic monomer composition to get all of the possible conversion range. The solubility effects of acrylonitrile in the suspension medium were considered. Furthermore, the yield of the reaction was improved through initiator addition by taking control of the reaction. The polymerizations could proceed under control up to a conversion of 80–90%. By using the copolymerization equations, the solubility of pure acrylonitrile in the suspension medium could be calculated and was found to be 8 wt.‐%. 相似文献
9.
Properties of na‐montmorillonite and cellulose nanocrystal reinforced poly(butyl acrylate‐co‐methyl methacrylate) nanocomposites 下载免费PDF全文
Alican Vatansever Hacer Dogan Tulay Inan Serdar Sezer Ahmet Sirkecioglu 《Polymer Engineering and Science》2015,55(12):2922-2928
Poly(butyl acrylate‐co‐methyl methacrylate) (BA‐co‐MMA) nanocomposite latexes were synthesized in the presence of sodium montmorillonite (Na‐MMT) and cellulose nanocrystal (CNC) as fillers. Nanocomposite preparation with 3 wt% Na‐MMT based upon the total monomer amount was conducted by semi‐batch emulsion polymerization. Furthermore, direct blending of neat copolymer latex with Na‐MMT was performed for comparison. CNC/BA‐co‐MMA nanocomposites were obtained via blending process with varying CNC content (1, 2, and 3 wt %). Good dispersion of both Na‐MMT and CNC within the copolymer matrix was achieved as demonstrated by X‐ray diffraction and transmission electron microscope. Particle size of the nanocomposite latexes was around 120 nm. Thermal, mechanical, and barrier properties of the copolymer showed great improvement with the addition of both Na‐MMT and CNC. CNC nanocomposites displayed enhanced properties with increasing CNC level. Tensile strength of copolymer latex with 3 wt% CNC reached 262.5% of the pristine latex, while tensile strength of Na‐MMT nanocomposite at the same content was 187.5% of the pristine latex. POLYM. ENG. SCI., 55:2922–2928, 2015. © 2015 Society of Plastics Engineers 相似文献
10.
The styrene (St) and isobornyl methacrylate (IBMA) random copolymer beads with controlled glass transition temperature (Tg), in the range of 105–158°C, were successfully prepared by suspension polymerization. The influence of the ratios of IBMA in monomer feeds on the copolymerization yields, the molecular weights and molecular weight distributions of the produced copolymers, the copolymer compositions and the Tgs of these copolymers was investigated systematically. The monomer reactivity ratios were r1 (St) = 0.57 and r2 (IBMA) = 0.20 with benzyl peroxide as initiator at 90°C, respectively. As the mass fraction of IBMA in monomer feeds was about 40 wt %, it was observed that the monomer conversion could be up to 90 wt %. The fractions of IBMA unit in copolymers were in the range of 35–40 wt % and Tgs of the corresponding copolymers were in the range of 119.6–128°C while the monomer conversion increased from 0 to greater than 90 wt %. In addition, the effects of other factors, such as the dispersants, polymerization time and the initiator concentration on the copolymerization were also discussed. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
11.
12.
Narrowly distributed nanoparticles of poly (n‐butyl methacrylate‐co‐vinyl pyrrolidone) were prepared through microemulsion polymerization with a nonionic surfactant of Tween‐80 as emulsifier (6 wt % of the latex) and n‐butanol as coemulsifier. The polymerizations were initiated with benzoylperoxide (BPO), potassium persulfate (KPS), KPS/ferric sulfate (FeSO4), and BPO/FeSO4, respectively, where the initiation in the case of BPO/FeSO4 took place mainly at the interphase between the oil phase and the reaction media. Namely, this interfacial‐initiated microemulsion polymerization resulted in larger particles with relatively narrower particle size distribution as well as higher limiting monomer conversion but lower polymerization rate compared with the polymerization initiated with KPS/FeSO4. In this article, the influences of initiation method, monomer ratio, and addition of water‐soluble components on microemulsion polymerization and latex particle size were studied to discuss the mechanism of interfacial‐initiated microemulsion polymerization. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2334–2340, 2004 相似文献
13.
Poly (lactic acid) (PLA) was melt blended in a twin screw extruder using an ethylene‐methyl acrylate‐glycidyl methacrylate rubber as a toughener. PLA/rubber blends were immiscible as observed by scanning electron microscopy. Impact strength and ductility of PLA were improved by the addition of the rubber at the expense of strength and stiffness. An organo‐montmorillonite (OMMT) was used at 2 wt % to counteract the negative effect of the rubber on modulus, and balanced properties were observed at 10 wt % rubber content. X‐ray diffraction and transmission electron microscopy revealed the formation of intercalated/exfoliated structure in the ternary nanocomposites. Thermal behavior analysis indicated that the degree of crystallinity is slightly affected by the clay and the rubber. Both the clay and the rubber decreased the crystallization temperature of PLA and acted as nucleating agents for PLA. The viscosity of the mixtures as measured by melt flow index was highly influenced by the rubber and the OMMT. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
14.
Koh‐Hei Nitta Takenori Kawada Valery V. Prokhorov Mikio Yamahiro Hideharu Mori Minoru Terano 《应用聚合物科学杂志》1999,74(4):958-964
The morphology and mechanical properties of novel block copolymers consisting of isotactic polypropylene (PP) and ethylene–propylene rubber (EPR) synthesized by a short‐period polymerization method were examined using differential scanning calorimetry, atomic force microscopy, dynamic mechanical analysis, and a rheooptical technique. It was found that the novel block copolymers show a single glass transition and EPR segments are trapped into the amorphous region of PP. Furthermore, the rheooptical analysis demonstrates that a drawing process of the EPR‐rich block copolymer induces orientation of the PP lamellae in the EPR matrix. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 958–964, 1999 相似文献
15.
Lei Xiong Zeyang Lian Hongbo Liang Shengmei Huang Hongqing Fan 《Polymer Composites》2013,34(12):2154-2159
The silica nanoparticles functionalized with poly(butyl acrylate‐co‐glycidyl methacrylate)‐g‐diaminodiphenyl sulfone (P(BA‐co‐GMA)‐g‐DDS)) were prepared via atom transfer radical polymerization and ring open reaction, and characterized by Fourier transform infrared and X‐ray photoelectron spectroscopy. Subsequently, the influence of SiO2 content on the mechanical and thermal properties for the bismaleimide (BMI) resin nanocomposites modified with pristine SiO2 and SiO2‐P(BA‐co‐GMA)‐g‐DDS) was investigated. It was found that SiO2‐P(BA‐co‐GMA)‐g‐DDS) was more effective as a modifier than pristine SiO2. The most significant improvement of the impact strength (+108.7%) and flexural strength (+64.5%) was obtained with SiO2‐P(BA‐co‐GMA)‐g‐DDS) at 0.5 wt% content. Moreover, the thermal properties of nanocomposites were distinctly improved with the addition of functionalized SiO2. The reasons for these changes were discussed in this article. POLYM. COMPOS., 34:2154–2159, 2013. © 2013 Society of Plastics Engineers 相似文献
16.
Tao Qi Akinari Sonoda Yoji Makita Hirofumi Kanoh Kenta Ooi Takahiro Hirotsu 《应用聚合物科学杂志》2002,83(11):2374-2381
Porous copolymer beads of 2,3‐epoxypropyl methacrylate (glycidyl methacrylate, GMA) crosslinked with 2‐ethyl‐2‐(hydroxymethyl)‐propan‐1,3‐diol trimethacrylate (trimethylolpropane trimethacrylate, TRIM) were prepared with toluene and octan‐2‐one as porogens by suspension polymerization. With an increase in the ratio of porogen to monomer, the total pore volume of poly(GMA‐co‐TRIM) increases significantly, whereas the surface area hardly changes. The total pore volume also depends on the nature of the porogen, exhibiting a maximum at the larger GMA contents in the monomer mixture of 50% v/v with octan‐2‐one and of 60% v/v with toluene, compared to that at the GMA content of 25% v/v with a 9/1 v/v mixture of cyclohexanol and dodecan‐1‐ol [Verweij, P. D.; Sherrington, D. C. J Mater Chem 1991, 1 (3), 371]. The surface area decreases significantly with an increase in the ratio of GMA to TRIM, almost regardless of the nature of the porogen. The porous properties of poly(GMA‐co‐TRIM) was well explained on the basis of phase separation, particularly taking into account not only the solubility parameters of the resulting polymer network and porogen but also the rigidity of TRIM. The porous poly(GMA‐co‐TRIM) may be a promising polymer matrix of novel materials for separation of boron isotopes. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2374–2381, 2002 相似文献
17.
Organic–inorganic hybrid poly(styrene‐co‐butyl acrylate)/organically modified montmorillonite (PSBA/organo‐MMT) latex particles have been prepared by in situ emulsion polymerization. The effects of modifier variety and the level of organo‐MMT have been investigated on the basis of the characteristics and mechanical properties of the resulting hybrid emulsion polymers. Although the more hydrophilic intercalated organic modifiers increased the latex particle size, the hydrophobic ones decreased the particle size. A more heterogeneous copolymer chain intercalation was seen by widespread XRD reflection as the organo‐MMT (organoclay) level increases. The tapping mode atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to determine the dispersion state of organoclay particles inside the nanocomposite copolymer films. Dynamic mechanical thermal analysis (DMTA) showed that adding the organoclay to the copolymer decreased the maximum loss tangent (tanδ) value and caused the shift to a lower temperature. Interestingly, the incorporation of organoclay decreased the glass storage modulus of the copolymer, while increased the rubbery storage modulus to some extent. In addition, a standard indenter for the nanoscratching of copolymer nanocomposite films was used under low applied loads of 150 and 250 μN. The nanoscratch results showed that incorporation of a 3 wt % hydrophobic organoclay, e.g., Closite15A, in the copolymer matrix enhanced considerably the near‐surface hardness and grooving resistance of the nanocomposite film at room temperature. In fact, copolymer nanocomposite films with higher near‐surface hardness and tanδ curve broadening exhibited more nanoscratch resistance through a specific variety of viscoelastic deformation, which did not create a bigger groove. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
18.
Gelatin‐g‐poly (butyl acrylate) copolymers were prepared with gelatin and butyl acrylate. The effects of various reaction parameters, including the concentration of the monomer, the concentration of the initiator, the concentration of gelatin, the reaction time, and the temperature, on the swelling behavior were studied systematically. In addition, the effect of the intercalation of graft copolymers with montmorillonite on the swelling behavior was investigated. The results indicated that the graft copolymerization and intercalation with montmorillonite could greatly reduce the swelling degree of gelatin. The swelling process of the copolymers followed second‐order kinetics identical to those of the original gelatin. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1033–1037, 2005 相似文献
19.
Zhenbin Chen Fang Dong Mingzhu Liu Xiaohua Qi 《Polymer Engineering and Science》2011,51(12):2453-2464
A novel semi‐interpenetrating polymer networks (semi‐IPNs) porous salt‐resistant superabsorbent composite was prepared by copolymerization of partially neutralized acrylic acid and acrylamide using polyethylene glycol as semi‐IPNs composite, N,N′‐methylenebisacrylamide, triene propanol phosphate, and trihydroxymethyl propane glycidol ether as crosslinking agents, methanol, propanol, and butanol as foaming agents, and L ‐ascorbic acid and peroxide hydrogen as initiators. To improve the properties of swollen hydrogel, such as strength, resilience, permeabilities, and dispersion, the copolymer was surface‐crosslinked, and then blended with aluminum sulfate, sodium carbonate, and sodium 1‐octadecanol phosphate in the course of post treatment. The influences of reaction conditions on properties of superabsorbent composite were investigated and optimized, and the water absorbency of superabsorbent composite prepared at optimal conditions in 0.9 wt% NaCl aqueous solution under atmospheric pressure and certain load (P ≈ 2 × 103 Pa) were 61 g g?1 and 16.7 g g?1, respectively. Moreover, the swelling rate reached 22.003 × 10?3 g (g s)?1. And the excellent hydrogel properties, such as hydrogel strength, resilience, permeabilities, and dispersion were also obtained. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers 相似文献
20.
Porous poly(methacrylic‐co‐triethyleneglycol dimethacrylate) (MAA‐3G) was prepared by suspension polymerization using benzoyl peroxide as an initiator, poly(vinyl alcohol) as a protective colloid, and n‐hexane as a porogenic agent. The prepared polymer was base hydrolysed using hydroxyl amine and sodium methoxide into the corresponding polyhydroxamic acid (HYOX). The metal binding behavior of polyhydroxamic acid with various metal ions, the effect of pH on the metal ion capturing, and the selectivity of the resin towards the different metal ions were also examined by means of atomic absorption spectrophotometer. The thermal stability of the prepared base‐hydrolysed polymer and the metal polymer complex was examined by thermal gravimetric analysis (TGA) and differential scanning calorimeter (DSC). The prepared porous polymer methacrylic‐co‐triethyleneglycol dimethacrylate and its different modulated forms were characterized by means of FTIR specroscopy and scanning electron microscope. The hydroxamic acid content was also examined by elemental analysis. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 149–159, 1999 相似文献