首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of phase interaction induced by reactive compatibilization during high shear and extensional flow in polyamide (PA6) and ethylene‐co‐butyl acrylate (EBA) blends was studied using advanced dual bore capillary rheometer. The viscosity‐composition behavior of the uncompatibilized PA6/EBA blends exhibited negative deviation behavior from log‐additivity rule. The interfacial slip mechanism, operative between the matrix PA6 and dispersed EBA during shear flow was studied by the use of Lin's and Bousmina‐Palierne‐Utracki (BPU) model for viscosity for the blends under the processing conditions. On the other hand, the compatibilized PA6/EBA‐g‐MAH0.49/EBA blends with varying dispersed phase volume fraction show positive deviation behavior. The reactive compatibilizers EBA‐g‐MAH0.49 and EBA‐g‐MAH0.96 increased the phase interaction with adequate reduction in the dynamic interfacial tension, which favored the particle break‐up and stabilized the morphology in the compatibilized blends. The extensional viscosity of the blends has enhanced because of the inclusion of EBA in all the uncompatibilized and compatibilized blends. The melt elasticity and elasticity function were systematically studied from first normal stress coefficient functions (ψ1). The variation in the recoverable shear strain (γR), shear rate dependent relaxation time (λ) and shear compliance (Jc) under various shear rates were thoroughly analyzed for all the blend compositions. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

2.
Co‐continuous amorphous copolyester (PETG)/polyoxymethylene (POM) (50/50 wt%/wt%) blends were prepared using a twin screw extruder followed compression molding. Two types of thermoplastic polyurethane (TPU) (i.e., polyester‐based and polyether‐based) were used to compatibilize the blends system. The thermal properties were characterized by using differential scanning calorimetry (DSC). The mechanical properties of the co‐continuous PETG/POM blends were studies through flexural and single‐edge notch tensile test (SEN‐T). The SEN‐T test was performed at three different testing speeds; 1, 100, and 500 mm/min. Scanning electron microscope (SEM) was used to access the fracture surface morphology. The flexural strength of the PETG/POM blends was decreased in the presence of TPU. This was attributed to the elastomeric nature of the TPU. The compatibilizing effects of TPU on the PETG/POM blends were proven by moderate improvement in the fracture toughness and confirmed by the SEM observation. The SEN‐T fractured surface of the compatibilized blends showed gross matrix shear yielding as compared to the uncompatibilized system. The Kc values of the PETG/POM blends decreased as the testing speed increased. The optimum toughening effect was observed in PETG/POM blends compatibilized with polyether‐based TPU at testing speed of 100 mm/min. The polyether‐based TPU is a more efficient compatibilizer, because the amount required is one‐half that of the polyester‐based counterpart to achieve the same Kc value. This was attributed to the elastomeric nature of the polyether‐based TPU. The softer nature of polyether‐based TPU could provide better toughening effect than the polyester‐based TPU, which is relatively harder in nature. POLYM. ENG. SCI., 45:710–719, 2005. © 2005 Society of Plastics Engineers  相似文献   

3.
Waste poly(ethylene terephthalate) (W‐PET)/acrylonitrile‐butadiene‐styrene (ABS) blends were prepared with a variety of compositions at several rotor speeds in an internal mixer, replacing ABS with different maleated ABS (ABS‐g‐MA) samples in compatibilized blends. A Box–Behnken model for three variables, with three levels, was chosen for the experimental design. ABS‐g‐MA‐based samples exhibited finer particles with a more uniform particle size distribution than ABS‐based ones, as a consequence of the compatibilizing process. Rheological results implied a greater elastic nature for compatibilized blends which increased in the presence of more ABS content; the same trend was observed for complex viscosity. With increasing ABS‐g‐MA or MA concentration, more shear thinning behavior was observed similar to that of ABS; whereas the uncompatibilized blends showed Newtonian behavior like that of W‐PET. The observed shifting in TgW‐PET and TgABS obtained from dynamic mechanical thermal analysis confirmed the good compatibility in W‐PET/ABS‐g‐MA blends in contrast with that in ordinary W‐PET/ABS blends. The mechanical properties were measured and modeled versus the various factors considered in a response surface methodology. The experimental data found a good fit with the obtained equation models. The mechanical properties of the compatibilized blends showed a large positive deviation from the mixing rule, while the uncompatibilized samples had lower properties, even compared to those predicted by the mixing rule. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

4.
Summary: Blends of poly(propylene) (PP) were prepared with poly[ethylene‐co‐(methyl acrylate)] (EMA) having 9.0 and 21.5% methyl acrylate comonomer. A similar series of blends were compatibilized by using maleic anhydride grafted PP. The morphology and mechanical properties of the blends were investigated using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) in tensile mode. The DMA method and conditions were optimized for polymer film specimens and are discussed in the experimental section. The DSC results showed separate melting that is indicative of phase‐separated blends, analogous to other PP‐polyethylene blends but with the added polarity of methyl acrylate pendant side groups that may be beneficial for chemical resistance. Heterogeneous nucleation of PP was decreased in the blends because of migration of nuclei into the more polar EMA phase. The crystallinity and peak‐melting temperature did not vary significantly, although the width of the melting endotherm increased in the blends indicating a change had occurred to the crystals. DMA analysis showed the crystal‐crystal slip transition and glass transition (Tg) for PP as well as a Tg of the EMA copolymer occurring chronologically toward lower temperatures. The storage modulus of PP and the blends was generally greater with annealing at 150 °C compared with isothermal crystallization at 130 °C. The storage modulus of the blends for isothermally crystallized PP increased with 5% EMA, then decreased for higher amounts of EMA. Annealing caused a decrease with increasing copolymer content. The extent of the trend was greater for the compatibilized blends. The Tg of the blends varied over a small range, although this change was less for the compatibilized blends.

Storage modulus for PP and EMA9.0 blends annealed at 150 °C.  相似文献   


5.
The reactive compatibilization of syndiotactic polystyrene (sPS)/oxazoline‐styrene copolymer (RPS)/maleic anhydride grafted ethylene‐propylene copolymer (EPR‐MA) blends is investigated in this study. First, the miscibility of sPS/RPS blends is examined by thermal analysis. The cold crystallization peak (Tcc) moved toward higher temperature with increased PRS, and, concerning enthalpy relaxation behaviors, only a single enthalpy relation peak was found in all aged samples. These results indicate that the sPS/RPS blend is miscible along the various compositions and RPS can be used in the reactive compatibilization of sPS/RPS/EPR‐MA blends. The reactive compatibilized sPS/RPS/EPR‐MA blends showed finer morphology than sPS/EPR‐MA physical blends and higher storage modulus (G') and complex viscosity (η*) when RPS contents were increased. Moreover, the impact strength of sPS/RPS/EPR‐MA increased significantly compared to sPS/EPR‐MA blend, and SEM micrographs after impact testing show that the sPS/RPS/EPR‐MA blend has better adhesion between the sPS matrix and the dispersed EPR‐MA phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2084–2091, 2002  相似文献   

6.
A new approach for enhancing the compatibility of liquid crystalline polymers (LCPs) with engineering thermoplastics is developed in this paper. By adding a new type of compatibilizer to poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO)/LCP blends (semi‐interpenetrating LCP network (ILCPN) comprising the liquid crystalline polymer poly‐(ethylene terephthalate)/p‐hydroxybenzoic acid (PET/60PHB) and crosslinked polystyrene), a well‐compatibilized PPO/LCP composite with considerably improved mechanical properties was obtained. Compared with the uncompatibilized PPO/LCP blend, the bending strength and the Izod impact strength of the compatibilized sample with 5% semi‐ILCPN increase more than 2 and 4 times, respectively.  相似文献   

7.
This study is an attempt to explore the effectiveness of thermoplastic copolyester elastomer (TPCE) as a toughening agent for improving the impact strength of PLA. Biobased Hytrel® thermoplastic copolyester of polyether glycol and polybutylene terephthalate was selected as the TPCE of choice for this study. Blends of PLA/Hytrel at varying weight ratios were prepared using extrusion followed by injection molding technique. Optimal synergies of two polymers were found in the PLA/Hytrel (70/30) blend, showing impact strength of 234 J/m, a sixfold increase compared to neat PLA. In order to obtain further enhancement in toughness, different functionalized terpolymers were added to accomplish reactive compatibilization. A series of functionalized terpolymers, ethylene methyle acrylate‐glycidyl methacrylate (EMA‐GMA), ethylene butyl acrylate‐glycidyl methacrylate (EBA‐GMA), ethylene methyl acrylate‐maleic anhydride (EMA‐MaH), and ethylene butyl acrylate‐maleic anhydride (EBA‐MaH) were selected. Comparing PLA ternary blends with different terpolymers, GMA containing terpolymers showed better impact toughness compared to MaH terpolymer blends. Unique fracture surface morphology showing debonding cavitation and massive shear yielding in the ternary blends containing EMA‐GMA resulted in super toughened blends. Highest zero shear viscosity and storage modulus was also observed for ternary blends with EMA‐GMA. Under the processing conditions and blend ratio investigated, EMA‐GMA showed better efficiency in improving the toughness of the PLA blends. POLYM. ENG. SCI., 58:280–290, 2018. © 2017 Society of Plastics Engineers  相似文献   

8.
The ductile–brittle transition temperatures were determined for compatibilized nylon 6/acrylonitrile‐butadiene‐styrene (PA6/ABS) copolymer blends. The compatibilizers used for those blends were methyl methacrylate‐co‐maleic anhydride (MMA‐MAH) and MMA‐co‐glycidyl methacrylate (MMA‐GMA). The ductile–brittle transition temperatures were found to be lower for blends compatibilized through maleate modified acrylic polymers. At room temperature, the PA6/ABS binary blend was essentially brittle whereas the ternary blends with MMA‐MAH compatibilizer were supertough and showed a ductile–brittle transition temperature at ?10°C. The blends compatibilized with maleated copolymer exhibited impact strengths of up to 800 J/m. However, the blends compatibilized with MMA‐GMA showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2643–2647, 2003  相似文献   

9.
Blends of recycled poly(ethylene terephthalate) (R‐PET) and (styrene‐ethylene‐ethylene‐propylene‐styrene) block copolymer (SEEPS) compatibilized with (maleic anhydride)‐grafted‐styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MAH) were prepared by melt blending. The compatibilizing effects of SEBS‐g‐MAH were investigated systematically by study of the morphology, linear viscoelastic behavior, and thermal and mechanical properties of the blends. The results show that there is good agreement between the results obtained by rheological measurement and morphological analysis. The rheological test shows that the melt elasticity and melt strength of the blends increase with the addition of SEBS‐g‐MAH. The Cole‐Cole plots and van Gurp‐Palmen plots confirm the compatibilizing effect of SEBS‐g‐MAH. However, the Palierne model fails to predict the linear viscoelastic properties of the blends. The morphology observation shows that all blends exhibit a droplet‐matrix morphology. In addition, the SEEPS particle size in the (R‐PET)/SEEPS blends is significantly decreased and dispersed uniformly by the addition of SEBS‐g‐MAH. Differential scanning calorimeter analysis shows that the crystallization behavior of R‐PET is restricted by the incorporation of SEEPS, whereas the addition of SEBS‐g‐MAH improves the crystallization behavior of R‐PET compared with that of uncompatibilized (R‐PET)/SEEPS blends. The Charpy impact strength of the blends shows the highest value at SEBS‐g‐MAH content of 10%, which is about 210% higher than that of pure R‐PET. J. VINYL ADDIT. TECHNOL., 22:342–349, 2016. © 2014 Society of Plastics Engineers  相似文献   

10.
The compatibilization of blends of poly(ethylene‐2,6‐naphthalate) (PEN) with polystyrene (PS), through the styrene‐glycidyl methacrylate copolymers (SG) containing various glycidyl methacrylate (GMA) contents, was investigated in this study. SG copolymers are able to react with PEN terminal groups during melt blending, resulting in the formation of desirable SG‐g‐PEN copolymers in the blend. These in situ formed copolymers tend to reside along the interface preferentially as the result of interfacial reaction and thus function as effective compatibilizers in PEN/PS blends. The compatibilized blends exhibit higher viscosity, finer phase domain, and improved mechanical properties. It is found that the degree of grafting of the in situ formed SG‐g‐PEN copolymer has to be considered as well. In blends compatibilized with the SG copolymer containing higher GMA content, heavily grafted copolymers would be produced. The length of the styrene segment in these heavily grafted copolymers would be too short to penetrate deep enough into the PS phase to form effective entanglements, resulting in the lower compatibilization efficiency in PEN/PS blends. Consequently, the in situ formation of SG‐g‐PEN copolymers with an optimal degree of grafting is the key to achieving the best performance for the eventually produced PEN/PS blends through SG copolymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 967–975, 2003  相似文献   

11.
In a blend of two immiscible polymers a controlled morphology can be obtained by adding a block or graft copolymer as compatibilizer. In the present work blends of low‐density polyethylene (PE) and polyamide‐6 (PA‐6) were prepared by melt mixing the polymers in a co‐rotating, intermeshing twin‐screw extruder. Poly(ethylene‐graft‐polyethylene oxide) (PE‐PEO), synthesized from poly(ethylene‐co‐acrylic acid) (PEAA) (backbone) and poly(ethylene oxide) monomethyl ether (MPEO) (grafts), was added as compatibilizer. As a comparison, the unmodified backbone polymer, PEAA, was used. The morphology of the blends was studied by scanning electron microscopy (SEM). Melting and crystallization behavior of the blends was investigated by differential scanning calorimetry (DSC) and mechanical properties by tensile testing. The compatibilizing mechanisms were different for the two copolymers, and generated two different blend morphologies. Addition of PE‐PEO gave a material with small, well‐dispersed PA‐spheres having good adhesion to the PE matrix, whereas PEAA generated a morphology characterized by small PA‐spheres agglomerated to larger structures. Both compatibilized PE/PA blends had much improved mechanical properties compared with the uncompatibilized blend, with elongation at break b) increasing up to 200%. Addition of compatibilizer to the PE/PA blends stabilized the morphology towards coalescence and significantly reduced the size of the dispersed phase domains, from an average diameter of 20 μm in the unmodified PE/PA blend to approximately 1 μm in the compatibilized blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2416–2424, 2000  相似文献   

12.
Blends of polycarbonate (PC) and acrylonitrile ‐ ethylene‐propylene‐diene‐styrene (AES) were reactive compatibilized by styrene‐maleic anhydride copolymers (SMA). The changes in phase morphology and interfacial characteristics of the blends as a function of maleic anhydride content of SMA and the concentration of compatibilizer have been systematic studied. The occurrence of reaction between the terminal hydroxyl groups of PC and the maleic anhydride (MA) of compatibilizer was confirmed by fourier transform infrared (FTIR) spectroscopy. A glass transition temperature (Tg) with an intermediate value between Tg(AES) and Tg(PC) was found on differential scanning calorimeter (DSC) curves of PC/AES blends compatibilized with SMA contains high levels of MA. Furthermore, at lower compatibilizer content, increase of the compatibilizer level in blends result in decreasing gap between two Tgs corresponding to the constituent polymers. Small angle X‐ray scattering (SAXS) test results indicated that compatibilizer concentration for the minimum of blend interface layer's thickness was exactly the same as it was when compatibilized PC/AES blend exhibited optimal compatibility in DSC test. The observed morphological changes were consistent well with the DSC and SAXS test results. A new mechanism of interfacial structural development was proposed to explain unusual phenomena of SMA compatibilized PC/AES blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42103.  相似文献   

13.
Blending polypropylene (PP) with biodegradable poly(3‐hydroxybutyrate) (PHB) can be a nice alternative to minimize the disposal problem of PP and the intrinsic brittleness that restricts PHB applications. However, to achieve acceptable engineering properties, the blend needs to be compatibilized because of the immiscibility between PP and PHB. In this work, PP/PHB blends were prepared with different types of copolymers as possible compatibilizers: poly(propylene‐g‐maleic anhydride) (PP–MAH), poly (ethylene‐co‐methyl acrylate) [P(E–MA)], poly(ethylene‐co‐glycidyl methacrylate) [P(E–GMA)], and poly(ethylene‐co‐methyl acrylate‐co‐glycidyl methacrylate) [P(E–MA–GMA)]. The effect of each copolymer on the morphology and mechanical properties of the blends was investigated. The results show that the compatibilizers efficiency decreased in this order: P(E–MA–GMA) > P(E–MA) > P(E–GMA) > PP–MAH; we explained this by taking into consideration the affinity degree of the compatibilizers with the PP matrix, the compatibilizers properties, and their ability to provide physical and/or reactive compatibilization with PHB. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
The compatibilizing effects of styrene‐glycidyl methacrylate (SG) copolymers with various glycidyl methyacrylate (GMA) contents on immiscible blends of poly(trimethylene terephthalate) (PTT) and polystyrene (PS) were investigated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and 13C‐solid‐state nuclear magnetic resonance (NMR) spectroscopy. The epoxy functional groups in the SG copolymer were able to react with the PTT end groups (? COOH or ? OH) to form SG‐g‐PTT copolymers during melt processing. These in situ–formed graft copolymers tended to reside along the interface to reduce the interfacial tension and to increase the interfacial adhesion. The compatibilized PTT/PS blend possessed a smaller phase domain, higher viscosity, and better tensile properties than did the corresponding uncompatibilized blend. For all compositions, about 5% GMA in SG copolymer was found to be the optimum content to produce the best compatibilization of the blend. This study demonstrated that SG copolymers can be used efficiently in compatibilizing polymer blends of PTT and PS. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2247–2252, 2003  相似文献   

15.
In this article, ethylene–propylene–diene‐rubber (EPDM) was epoxidized with an in situ formed performic acid to prepare epoxided EPDM (eEPDM). The eEPDM together with the introduction of PP‐g‐AA was used to compatibilize PP/EPDM blends in a Haake mixer. FTIR results showed that the EPDM had been epoxidized. The reaction between epoxy groups in the eEPDM and carboxylic acid groups in PP‐g‐AA had taken place, and PP‐g‐EPDM copolymers were formed in situ. Torque test results showed that the actual temperature and torque values for the compatibilized blends were higher than that of the uncompatibilized blends. Scanning electron microscopy (SEM) observation showed that the dispersed phase domain size of compatibilized blends and the uncompatibilized blends were 0.5 and 1.5 μm, respectively. The eEPDM together with the introduction of PP‐g‐AA could compatibilize PP/EPDM blends effectively. Notched Izod impact tests showed that the formation of PP‐g‐EPDM copolymer improved the impact strength and yielded a tougher PP blend. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3949–3954, 2006  相似文献   

16.
The effect of poly(D ,L ‐lactide‐copara‐dioxanone) (PLADO) as the compatibilizer on the properties of the blend of poly(para‐dioxanone) (PPDO) and poly(D ,L ‐lactide) (PDLLA) has been investigated. The 80/20 PPDO/PDLLA blends containing from 1% to 10% of random copolymer PLADO were prepared by solution coprecipitation. The PLADO component played a very important role in determining morphology, thermal, mechanical, and hydrophilic properties of the blends. Addition of PLADO into the blends could enhance the compatibility between dispersed PDLLA phase and PPDO matrix; the boundary between the two phases became unclear and even the smallest holes were not detected. On the other hand, the position of the Tg was composition dependent; when 5% PLADO was added into blend, the Tg distance between PPDO and PDLLA was shortened. The blends with various contents of compatibilizer had better mechanical properties compared with simple PPDO/PDLLA binary polymer blend, and such characteristics further improved as adding 5% random copolymers. The maximum observed tensile strength was 29.05 MPa for the compatibilized PPDO/PDLLA blend with 5% PLADO, whereas tensile strength of the uncompatibilized PPDO/PDLLA blend was 14.03 MPa, which was the lowest tensile strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Ternary blends of polyoxymethylene (POM), polyolefin elastomer (POE), and glycidyl methacrylate grafted high density polyethylene (GMA‐g‐HDPE) with various component ratios were studied for their mechanical and thermal properties. The size of POE dispersed phase increased with increasing the elastomer content due to the observed agglomeration. The notched impact strength demonstrated a parabolic tendency with increasing the elastomer content and reached the peak value of 10.81 kJ/m2 when the elastomer addition was 7.5 wt%. The disappearance of epoxy functional groups in the POM/POE/GMA‐g‐HDPE blends indicated that GMA‐g‐HDPE reacted with the terminal hydroxyl groups of POM and formed a new graft copolymer. Higher thermal stability was observed in the modified POM. Both storage modulus and loss modulus decreased from dynamic mechanical analysis tests while the loss factor increased with increasing the elastomer content. GMA‐g‐HDPE showed good compatibility between the POM matrix and the POE dispersed phase due to the reactive compatibilization of the epoxy groups of GMA and the terminal hydroxyl groups of POM. A POM/POE blend without compatibilizer was researched for comparison, it was found that the properties of P‐7.5(POM/POE 92.5 wt%/7.5 wt%) were worse than those of the blend with the GMA‐g‐HDPE compatibilizer. POLYM. ENG. SCI., 57:1119–1126, 2017. © 2017 Society of Plastics Engineers  相似文献   

18.
This paper reports about the polymerization of ε‐caprolactam monomer in the presence of low molecular weight hydroxyl or isocyanate end‐capped ethylene‐butylene elastomer (EB) elastomers as a new concept for the development of a submicron phase morphology in polyamide 6 (PA6)/EB blends. The phase morphology, viscoelastic behavior, and impact strength of the polymerization‐designed blends are compared to those of similar blends prepared via melt‐extrusion of PA6 homopolymer and EB elastomer. Polyamide 6 and EB elastomer were compatibilized using a premade triblock copolymer PA6‐b‐EB‐b‐PA6 or a pure EB‐b‐PA6 diblock reactively generated during melt‐blending (extrusion‐prepared blends) or built‐up via anionic polymerization of ε‐caprolactam on initiating ? NCO groups attached to EB chain ends (polymerization‐prepared blends). Two compatibilization approaches were considered for the polymerization‐prepared blends: (i) the addition of a premade PA6‐b‐EB‐b‐PA6 triblock copolymer to the ε‐caprolactam monomer containing nonreactive EB? OH elastomer and (ii) generation in situ of a PA6‐b‐EB diblock using EB? NCO precursor on which polyamide 6 blocks are built‐up via anionic polymerization of ε‐caprolactam. The noncompatibilized blends exhibit a coarse phase morphology, either in the extruded or the polymerization prepared blends. Addition of premade triblock copolymer (PA6‐b‐EB‐b‐PA6) to a EB? OH /ε‐caprolactam dispersion led to a fine EB phase (0.14 μm) in the PA6 matrix after ε‐caprolactam polymerization. The average particle size of the in situ reactively compatibilized polymerization‐prepared blend is about 1 μm. The notched Izod impact strength of the blend compatibilized with premade triblock copolymer was much higher than that of the neat PA6, the noncompatibilized, and the in situ reactively compatibilized polymerization blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2538–2544, 2004  相似文献   

19.
The reactive compatibilization of blends of HDPE–PET [high‐density polyethylene–poly(ethylene terephthalate)] was investigated in this study. The compatibilizers used were two grafted copolymers prepared by reactive extrusion containing 1.20–2.30 wt % GMA such as HDPE‐g‐GMA and one statistical copolymer containing 1 wt % GMA such as Lotader AX8920. HDPE was successfully functionalized using a melt free‐radical grafting technique. Grafting was initiated in two ways: adding an initiator in the polymer–monomer mixture or activation by ozone of polymer. Ozonization of HDPE by the introduction of a peroxide lead to a better grafting yield and to better grafting efficiency of the samples. The effects of the three compatibilizers were evaluated by studying the morphology and the thermal and mechanical properties of HDPE–PET (70/30 wt %) blends. Significant improvements were observed, especially in morphology, elongation at break, and Charpy impact strength of the compatibilized blends. A more pronounced compatibilizing effect was obtained with the statistical copolymer, for which the elongation at break and the impact strength were increased by 100%, while the uncompatibilized blends showed a 60% decrease in the Young's modulus and the strength at break. We also were able to show that the grafting yield increase of 1.20–2.30 wt % of GMA did not affect the properties of the blends because the grafted copolymers possess very similar chemical structures. However, compatibilization of blends with grafted copolymers is an interesting method, particularly for recycled blends, because the synthesis of these compatibilizers is easy and cheap in comparison to statistical copolymer. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2377–2386, 2001  相似文献   

20.
The thermal behavior and morphology of multicomponent blends based on PA6, polyamide 6 (PA6)/styrene–acrylonitirle copolymer (SAN), PA6/acrylonitrile–butadiene–styrene terpolymer (ABS), and their compatibilized blends with styrene–acrylonitrile–maleic anhydride copolymer (SANMA) were studied using DSC and SEM. The blends were prepared in a twin‐screw extruder under similar processing conditions, keeping the PA6 content fixed at 50 wt %. It was found that, in all the blends, the second component had a nucleating effect and improved the overall degree and rate of crystallization of PA6, whereas addition of a compatibilizer slightly diminished these effects and resulted in significant changes in the blend morphology. The nucleating effect and consequent changes in the crystallization behavior was attributed to the presence of SAN, which is a common component in all the blends. The Tg of PA6 in the blends with a cocontinuous morphology, due to the connectivity between the phases, is higher than in the blends with a disperse‐type morphology. The compatibilized blends have a lower crystallization rate and nucleation ability with a cocontinuous morphology, whereas the uncompatibilized blends have a higher crystallization rate with a higher nucleation ability and a disperse and/or a coarse cocontinuous morphology. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2753–2759, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号