首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Solid-phase associations of chromium were examined in core materials collected from a full-scale, zerovalent iron permeable reactive barrier (PRB) at the U.S. Coast Guard Support Center located near Elizabeth City, NC. The PRB was installed in 1996 to treat groundwater contaminated with hexavalent chromium. After eight years of operation, the PRB remains effective at reducing concentrations of Cr from average values >1500 microg L(-1) in groundwater hydraulically upgradient of the PRB to values <1 microg L(-1) in groundwater within and hydraulically downgradient of the PRB. Chromium removal from groundwater occurs at the leading edge of the PRB and also within the aquifer immediately upgradient of the PRB. These regions also witness the greatest amount of secondary mineral formation due to steep geochemical gradients that result from the corrosion of zerovalent iron. X-ray absorption near-edge structure (XANES) spectroscopy indicated that chromium is predominantly in the trivalent oxidation state, confirming that reductive processes are responsible for Cr sequestration. XANES spectra and microscopy results suggest that Cr is, in part, associated with iron sulfide grains formed as a consequence of microbially mediated sulfate reduction in and around the PRB. Results of this study provide evidence that secondary iron-bearing mineral products may enhance the capacity of zerovalent iron systems to remediate Cr in groundwater, either through redox reactions at the mineral-water interface or by the release of Fe(II) to solution via mineral dissolution and/or metal corrosion.  相似文献   

2.
Iron and sulfur reducing conditions generally develop in permeable reactive barrier systems (PRB) constructed to treat contaminated groundwater. These conditions allow formation of FeS mineral phases. FeS readily degrades TCE, but a transformation of FeS to FeS2 could dramatically slow the rate of TCE degradation in the PRB. This study uses acid volatile sulfide (AVS) and chromium reducible sulfur (CRS) as probes for FeS and FeS2 to investigate iron sulfide formation and transformation in a column study and PRB field study dealing with TCE degradation. Solid phase iron speciation shows that most of the iron is reduced and sulfur partitioning measurements show that AVS and CRS coexist in all samples, with the conversion of AVS to CRS being most significant in locations with potential oxidants available. In the column study, 54% of FeS was transformed to FeS2 after 2.4 years. In the field scale PRB, 43% was transformed after 5.2 years. Microscopy reveals FeS, Fe3S4 and FeS2 formation in the column system; however, only pyrite formation was confirmed byX-ray diffraction. The polysulfide pathway is most likely the primary mechanism of FeS transformation in the system, with S0 as an intermediate species formed through H2S oxidation.  相似文献   

3.
The removal of As(V), one of the most poisonous groundwater pollutants, by synthetic nanoscale zero-valent iron (NZVI) was studied. Batch experiments were performed to investigate the influence of pH, adsorption kinetics, sorption mechanism, and anionic effects. Field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mossbauer spectroscopy were used to characterize the particle size, surface morphology, and corrosion layer formation on pristine NZVI and As(V)-treated NZVI. The HR-TEM study of pristine NZVI showed a core-shell-like structure, where more than 90% of the nanoparticles were under 30 nm in diameter. M?ssbauer spectroscopy further confirmed its structure in which 19% were in zero-valent state with a coat of 81% iron oxides. The XRD results showed that As(V)-treated NZVI was gradually converted into magnetite/maghemite corrosion products over 90 days. The XPS study confirmed that 25% As(V) was reduced to As(III) by NZVI after 90 days. As(V) adsorption kinetics were rapid and occurred within minutes following a pseudo-first-order rate expression with observed reaction rate constants (Kobs) of 0.02-0.71 min(-1) at various NZVI concentrations. Laser light scattering analysis confirmed that NZVI-As(V) forms an inner-sphere surface complexation. The effects of competing anions revealed that HCO3-, H4SiO4(0), and H2PO4(2-) are potential interfering agents in the As(V) adsorption reaction. Our results suggest that NZVI is a suitable candidate for As(V) remediation.  相似文献   

4.
A permeable reactive barrier (PRB) using zerovalent iron (ZVI) was installed at a site near Ca?on City, CO, to treat molybdenum (Mo) and uranium (U) in groundwater. The PRB initially decreased Mo concentrations from about 4.8 to less than 0.1 mg/L; however, Mo concentrations in the ZVI increased to 2.0 mg/L after about 250 days and continued to increase until concentrations in the ZVI were about 4 times higherthan in the influent groundwater. Concentrations of U were reduced from 1.0 to less than 0.02 mg/L during the same period. Investigations of solid-phase samples indicate that (1) calcium carbonate, iron oxide, and sulfide minerals had precipitated in pores of the ZVI; (2) U and Mo were concentrated in the upgradient 5.1 cm of the ZVI; and (3) calcium was present throughout the ZVI accounting for up to 20.5% of the initial porosity. Results of a column test indicated that the ZVI from the PRB was still reactive for removing Mo and that removal rates were dependenton residence time and pH. The chemical evolution of the PRB is explained in four stages that present a progression from porous media flow through preferential flow and, finally, complete bypass of the ZVI.  相似文献   

5.
A method incorporating laboratory analysis of constituents that formed as reaction products was developed and used to determine the flux of groundwater through a zerovalent iron-based permeable reactive barrier (PRB) installed to treat U-contaminated groundwater. Concentrations of three nonvolatile constituents (Ca, U, and V) that formed as reaction products in the PRB were analyzed in 279 samples. Areal distributions of the reaction products indicate that groundwater flowed through all portions of the PRB and that nearly the entire volume of reactive material is treating the groundwater. Almost 9 t of calcium carbonate precipitated in the PRB during the first 2.7 yr of operation, but only 24 kg of combined U- and V-bearing minerals precipitated during the same period. Concentration gradients of Ca, U, and V dissolved in the groundwater indicate that a hydraulically upgradient portion of the PRB lost some reactivity during the first 2.7 yr of operation. Calculations that partially couple porosity changes to ZVI reactivity suggest that loss of reactivity may be more limiting than porosity reduction for long-term performance of the PRB. Calculations using groundwater concentration gradients and solid-phase concentrations indicate that the mean groundwater flux ranged from 11 to 24 L/min, considerably less than the design flux of 185 L/min. Flux values calculated with all three constituents were in good agreement. This method provides a more accurate determination of groundwater flux than is possible with flow sensor measurements, dissolved tracers, or Darcy's law computations.  相似文献   

6.
A permeable reactive barrier (PRB) containing zerovalent iron [Fe(O)] was installed at a former uranium milling site in Monticello, UT. A large-scale column experiment was conducted at the site to test the feasibility of Fe(O) to treat U prior to installing the PRB. Effluents from the field column experiment had pH values near 7.34, moderate decreases in C(IV) and Ca concentrations, and an elevated Fe concentration (27.1 mg/L). In contrast, groundwater exiting the PRB had a pH value of 9.82, decreases in C(IV) and Ca concentrations, and a low concentration of Fe (0.17 mg/L). A geochemical model was used to explain the chemical changes that occurred in both the field column experiment and the PRB. The model simulated the systems by the progressive irreversible dissolution of Fe(O). Modeling results indicated that a longer residence time in the PRB compared with the shorter residence time in the column contributed to the disparate effluent qualities. Prior to modeling, a controlled laboratory column experiment was conducted to help evaluate the dominant chemical mechanisms by which Fe(O) removes U from aqueous solutions. Results of the laboratory column experiment indicated that only a small amount of U could be adsorbed to ferric minerals, and, therefore, this mechanism was not considered in the model.  相似文献   

7.
Uranium binding to bone charcoal and bone meal apatite materials was investigated using U L(III)-edge EXAFS spectroscopy and synchrotron source XRD measurements of laboratory batch preparations in the absence and presence of dissolved carbonate. Pelletized bone char apatite recovered from a permeable reactive barrier (PRB) at Fry Canyon, UT, was also studied. EXAFS analyses indicate that U(VI) sorption in the absence of dissolved carbonate occurred by surface complexation of U(VI) for sorbed concentrations < or = 5500 microg U(VI)/g for all materials with the exception of crushed bone char pellets. Either a split or a disordered equatorial oxygen shell was observed, consistent with complexation of uranyl by the apatite surface. A second shell of atoms at a distance of 2.9 A was required to fit the spectra of samples prepared in the presence of dissolved carbonate (4.8 mM total) and is interpreted as formation of ternary carbonate complexes with sorbed U(VI). A U-P distance at 3.5-3.6 A was found for most samples under conditions where uranyl phosphate phases did not form, which is consistent with monodentate coordination of uranyl by phosphate groups in the apatite surface. At sorbed concentrations > or = 5500 microg U(VI)/g in the absence of dissolved carbonate, formation of the uranyl phosphate solid phase, chernikovite, was observed. The presence of dissolved carbonate (4.8 mM total) suppressed the formation of chernikovite, which was not detected even with sorbed U(VI) up to 12,300 microg U(VI)/g in batch samples of bone meal, bone charcoal, and reagent-grade hydroxyapatite. EXAFS spectra of bone char samples recovered from the Fry Canyon PRB were comparable to laboratory samples in the presence of dissolved carbonate where U(VI) sorption occurred by surface complexation. Our findings demonstrate that uranium uptake by bone apatite will probably occur by surface complexation instead of precipitation of uranyl phosphate phases under the groundwater conditions found at many U-contaminated sites.  相似文献   

8.
Following a thorough site investigation, a biological Sequential Reactive Barrier (SEREBAR), designed to remove Polycyclic Aromatic Hydrocarbons (PAHs) and BTEX compounds, was installed at a Former Manufactured Gas Plant (FMGP) site. The novel design of the barrier comprises, in series, an interceptor and six reactive chambers. The first four chambers (2 nonaerated-2 aerated) were filled with sand to encourage microbial colonization. Sorbant Granular Activated Carbon (GAC) was present in the final two chambers in order to remove any recalcitrant compounds. The SEREBAR has been in continuous operation for 2 years at different operational flow rates (ranging from 320 L/d to 4000 L/d, with corresponding residence times in each chamber of 19 days and 1.5 days, respectively). Under low flow rate conditions (320-520 L/d) the majority of contaminant removal (>93%) occurred biotically within the interceptor and the aerated chambers. Under high flow rates (1000-4000 L/d) and following the installation of a new interceptor to prevent passive aeration, the majority of contaminant removal (>80%) again occurred biotically within the aerated chambers. The sorption zone (GAC) proved to be an effective polishing step, removing any remaining contaminants to acceptable concentrations before discharge down-gradient of the SEREBAR (overall removals >95%).  相似文献   

9.
A pilot-scale field trial was undertaken to evaluate the potential of in situ polymer mats (installed in series) as permeable reactive barriers within a treatment wall remediation system to induce sequential bioremediation of ammonium-contaminated groundwater. The treatment wall consisted of 10 m wide impermeable wings on either side of a 0.75 m wide permeable reactive zone flow-through box. Two polymer mats were positioned in the flow-through box. The upgradient polymer mat within the flow-through box was used to deliver oxygen to induce bacterial nitrification of the ammonium to nitrite/nitrate as the groundwater moved past. The downgradient polymer mat delivered ethanol to induce bacterial denitrification of the nitrite/nitrate to produce nitrogen gas. The field trial was carried out at a near-shore location. Initially the flow-through box was left open; however, this resulted in substantial groundwater mixing, which inhibited sequential remediation. Once the flow-through box was in-filled with gravel, groundwater mixing was reduced, achieving a greater than 90% reduction in total N. Estimated first-order half-lives for nitrification and denitrification rates were 1.2 and 0.4 d, respectively. Field nitrification half-lives were approximately an order of magnitude greater than rates determined in large-scale columns using soil and groundwater from the site, while denitrification half-lives were similar. The results of this pilot-scale field trial indicate that sequential bioremediation of ammonium-contaminated groundwater at field scale is feasible using in situ polymer mats as permeable reactive barriers, although hydraulic conditions can be complex in such barrier systems.  相似文献   

10.
Large-scale column experiments were undertaken to evaluate the potential of in situ polymer mats (installed in series) to be used as permeable reactive barriers for delivery of oxidants and reductants to induce sequential bioremediation of ammonium-contaminated groundwater (approximately 120mg L(-1) NH4+-N), without bioaugmentation. The strategy was for the first group of polymer mats to deliver oxygen to induce bacterial nitrification of the ammonium to nitrite/ nitrate as the groundwater moved past and for the second group of polymer mats to deliver hydrogen or ethanol, to induce bacterial denitrification of the nitrite/nitrate to produce nitrogen gas. Once purging of the first polymer mat commenced, ammonium concentrations decreased downgradient from the polymer mats. Nitrification rates increased and stabilized over the 6-month experiment, with stable nitrification half-lives in the range 0.07-0.25 days. Nitrification most likely occurred in a biologically active zone at the polymer wall/aqueous interface. With hydrogen delivery via the polymer mats, a denitrification half-life (nitrate plus nitrite removal) of 3.5 days was induced. Denitrification rates were significantly enhanced when ethanol was delivered via a polymer mat, with denitrification half-lives in the range of 0.12-0.34 days. Nitrification/ denitrification rates were maintained for groundwater flow rates up to 300 m yr(-1), suggesting oxygen and ethanol delivery rates via the polymer mats were sufficient not to limit nitrification or denitrification. In soil columns, the polymer mat delivery system provided an effective and reliable technique for delivery of oxygen and hydrogen or ethanol for sequential nitrification/denitrification of ammonium-contaminated groundwater. Scale-up of this concept to a field pilot-scale is currently underway.  相似文献   

11.
A new active material for the treatment of uranium-contaminated groundwater using permeable reactive barriers has been developed. This material, called PANSIL, is an example of a tailored ligand system that selectively removes a contaminant from solution. The active medium in PANSIL is a polyacryloamidoxime resin derived from polyacrylonitrile, which is deposited from solution onto the surface of quartz sand to form a thin film coating. PANSIL is highly effective at sequestering UO2(2+) from solution when the pH is between about 5 and 8 and can preferentially sequester UO2(2+) from solutions that are typical of the groundwater from a mine tailings site, due to the stability of the polyacryloamidoxime uranyl complex formed. Uranium sequestration capacity will depend on the surface area of the sand that is resin coated, but in the batch of PANSIL tested (<2% resin by weight), it exceeds 4000 mg of UO2 per kg of PANSIL at pH 4.5 when the dissolved UO2(2+) concentration is greaterthan 300 mg/L. PANSIL largely retains the permeability and strength of the sand employed and therefore has suitable engineering properties for permeable reactive barrier applications.  相似文献   

12.
The effectiveness of a nonvegetated lab-scale subsurface flow constructed wetland for wastewater treatment had been evaluated with the feed ammonium concentration of approximately 20-40 mg of NH4(+)-N L(-1) and a hydraulic retention time of approximately 10 d. The present system had a nitrification zone plus a sulfur/limestone (S/L) autotrophic denitrification zone followed by an anaerobic polishing zone and was operated with and without aeration. The wetland had only 80% organics removal and no net nitrogen removal when there was no artificial aeration. However, almost 100% organics removal and approximately 81-90% total inorganic nitrogen (TIN = NH4(+)-N + NO2(-0-N + NO3(-)-N) removal were achieved when the oxic zone of the system was aerated with compressed air. S/L autotrophic denitrification contributed 21-49% of total NO3(-)-N removal across the whole wetland and 50-95% across the S/L column. TIN and NH4(+)-N in the effluent were always < 5.5 and < 0.7 mg L(-1), respectively, when the feed had NH4(+)-N < or = 35 mg L(-1). Sulfate removal of approximately 53-69% was achieved in the anaerobic polishing zone. The position of the S/L column was changed (1.78, 2.24, and 2.69 m from the inlet), and no remarkable difference in nitrogen removal was observed. However, without the S/L column, TIN removal decreased to approximately 74%, and the effluent NO3(-)-N increased about two times (9.13 mg of N L(-1)). The present study has demonstrated the possible use of S/L autotrophic denitrification for nitrate removal in a constructed wetland.  相似文献   

13.
Of all the naturally occurring groundwater contaminants, arsenic is by far the most toxic. Any large-scale treatment strategy to remove arsenic from groundwater must take into consideration safe containment of the arsenic removed with no adverse ecological impact. Currently, 175 well-head community-based arsenic removal units are in operation in remote villages of the Indian subcontinent. Approximately 150,000 villagers collect arsenic-safe potable water everyday from these units. The continued safe operation of these units has amply demonstrated that use of regenerable arsenic-selective adsorbents is quite viable in remote locations. Upon exhaustion, the adsorbents are regenerated in a central facility by a few trained villagers and reused. The process of regeneration reduces the volume of disposable arsenic-laden solids by nearly 2 orders of magnitude. Finally, the arsenic-laden solids are contained on well-aerated coarse-sand filters with minimum arsenic leaching. This disposal technique is scientifically more appropriate than dumping arsenic-loaded adsorbents in the reducing environment of landfills as currently practiced in developed countries including the United States.  相似文献   

14.
The nitrogen (N) removal potential of constructed wetlands is increasingly used to lower the N load from agricultural nonpoint sources to inland and coastal waters. To determine the removal efficiency and key factors limiting wetland N removal, N fluxes were studied in a small constructed wetland in Central Switzerland. With an isotope mass balance approach integrating the natural isotope signature of nitrate (NO3-, ammonium (NH4+), and particulate nitrogen (PN), the N transformations such as assimilation, mineralization, nitrification, and denitrification were quantified. On average, the wetland removed 45 g m(-2) yr(-1) N during the studied 2.5 years, corresponding to a removal efficiency of 27%. Denitrification contributed 94% to the N removal, while only 6% of the removed N accumulated in the sediments. Denitrification was most efficient during periods with an oxic water column overlying anoxic sediments, as NH4+ released during mineralization of sediment organic matter was completely nitrified and subsequently denitrified at the sediment-water interface. During water column anoxia, NH4+ accumulated in the water and fueled assimilation by duckweed and internal recycling. The NO3-N isotope signature in the wetland mainly reflected the mineralization of sediment organic matter and subsequent nitrification, while denitrification at the sediment-water interface produced no fractionation.  相似文献   

15.
Arsenic removal is often challenging due to high As(III), phosphate, and silicate concentrations and low natural iron concentrations. Application of zerovalent iron is promising, as metallic iron is widely available. However, removal mechanisms remained unclear and currently used removal units with iron have not been tested systematically, partly due to their large size and long operation time. This study investigated smaller filter columns with 3-4 filters, each containing 2.5 g of iron filings and 100-150 g of sand. At a flow rate of 1 L/h, these columns were able to treat 75-90 L of well water with 440 microg/L As, 1.8 mg/L P, 4.7 mg/L Fe, 19 mg/L Si, and 6 mg/L dissolved organic carbon (DOC) to below 50 microg/L As(tot), without addition of an oxidant. As(III) was oxidized in parallel to oxidation of corrosion-released Fe(II) by dissolved oxygen and sorbed on the forming hydrous ferric oxides (HFO). The open filter columns prevented anoxic conditions. DOC did not appear to interfere with arsenic removal. Manganese was reduced after a slight initial increase from 0.3 mg/L to below 0.1 mg/L. About 100 mg of Fe(0)/L of water was required, 3-5 times less than that for larger units with sand and iron turnings.  相似文献   

16.
A novel adsorbent, used for the selective removal of tannins from medicinal plant extracts, was prepared from bovine skin collagen fiber. Some typical active constituents of medicinal plants were selected as probe molecules to investigate the adsorption selectivity of the collagen fiber adsorbent to tannins. In batch adsorption experiments, the extent of adsorption of condensed tannins, including larch tannin, black wattle tannin and bayberry tannin, was 100%. The extent of adsorption of tannic acid and the hydrolyzable tannins was also 100%. In contrast, for the most active constituents of medicinal plants, their amounts adsorbed by collagen fiber adsorbent were limited. For procyanidin, the common active constituents in medicinal plant extracts, its extent of adsorption was also low, although it has a similar basic structure to condensed tannins. In comparison with traditionally used polyamide adsorbent, the collagen fiber adsorbent exhibited an obvious advantage in adsorption selectivity over tannins. Therefore, this study provides a novel and effective method for selective removal of tannins from medicinal plant extracts. Copyright © 2005 Society of Chemical Industry  相似文献   

17.
Multiple column experiments were performed using two commercial iron materials to evaluate the necessity and usefulness of preliminary investigations in permeable reactive barrier (PRB) design for chlorinated organics. Experiments were performed with contaminated groundwater and involved fresh iron granules or altered iron material excavated from PRBs. The determination of first-order rate coefficients by global nonlinear least-squares fittings indicated a variability in rate coefficients on 1 or 2 orders of magnitude. Geometric mean values of surface area normalized rate coefficients (in 10(-5) L m(-2) h(-1)) for fresh gray cast iron and iron sponge, respectively, are: tetrachloroethene (4.5, 2.6), trichloroethene (8.1, 3.3), cis-1,2-dichloroethene (3.1, 2.9), trans-1,2-dichloroethene (9.5, 5.3), 1,1-dichloroethene (4.0, 4.4), and vinyl chloride (1.6, 6.1). The increasing rate coefficients with decreasing grade of chlorination, which characterize degradation at iron sponge are linearly related to diffusion coefficients in water, suggesting diffusion limitation in the degradation process for this particular material, possibly due to a high inner surface. The variability in rate coefficients seems to be too high to use mean rate coefficients from published studies in the design procedure of PRBs, and variabilities cannot be related to groundwater characteristics, waterflow through the reactive cells, or secondary corrosion reactions.  相似文献   

18.
Two-phase bioreactors consisting of bacterial consortium in suspension and sorbents with immobilized biomass were used to treat waste air containing chlorinated ethenes, trichloroethylene (TCE) and tetrachloroethylene (PCE). Synthetic municipal sewage was used as the medium for bacterial growth. The system was operated with loadings in the range 1.48-4.76 gm(-3)h(-1) for TCE and 1.49-5.96 gm(-3)h(-1) for PCE. The efficiency of contaminant elimination was 55-86% in the bioreactor with wood chips and 33-89% in the bioreactor filled with zeolite. The best results were observed 1 week after the pollutant loading was increased. However, in these conditions, the stability of the process was not achieved. In the next 7 days the effectiveness of the system decreased. Contaminant removal efficiency, enzymatic activity and the biomass content were all diminished. The system was working without being supplied with additional hydrocarbons as the growth-supporting substrates. It is assumed that ammonia produced during the transformation of wastewater components induced enzymes for the cometabolic degradation of TCE and PCE. However, the evaluation of nitrogen compound transformations in the system is difficult due to the sorption on carriers and the combined processes of nitrification and the aerobic denitrification. An applied method of air treatment is advantageous from both economic and environmental point of views.  相似文献   

19.
20.
The total estrogenic activity of the wastewater from a swine farm in Japan was quantitatively characterized, and the compounds responsible for the estrogenic activity were identified and quantified. The wastewater treatment process consisted of a series of an up-flow anaerobic sludge blanket (UASB) and a trickling filter. Samples were collected at each treatment step, and the total estrogenic activity was determined by use of an in vitro gene expression assay (MVLN; MCF-7 human breast cancer cell stably transfected with the pVit-tk-LUC receptor plasmid). Individual estrogenic compounds were identified and quantified using liquid chromatography-mass spectrometry (LC/MS) and liquid chromatography-tandem mass spectrometry (LC/ MS/MS). To further identify the compounds contributing to the estrogenic activity in the wastewater, the sample extracts were fractionated into 12 fractions (fractions 1-12) by HPLC. The rate of removal of estrogenic activity between the effluent and the influent was greater than 97%. The trickling filter removed the majority of the estrogenic activity. The removal rates of specific estrogenic compounds ranged from 44 to 99%. Estrogenic activity was detected mainly in the fractions containing estrone (El), 17beta-estradiol (betaE2), 17alpha-estradiol (alpha E2), estriol (E3), bisphenol A (alphaPA), and equol (EQ0). The ratios of betaE2-EQc (betaE2 equivalents derived from chemical analysis) to betaE2-EQB (betaE2 equivalent derived from bioassay) in the 12 fractions collectively were contributed by El (17-30%), betaE2 (23-30%), acE2 (<1%), E3 (1-2%), BPA (<1%), and EQO (2-3%) in the influent and El (16-37%), PE2 (<1-7%), alphaE2 (<1%), E3 (<1-3%), BPA (<1%), and EQO (<1%) in the effluent. The compounds responsible for most of the estrogenic activity measured in the bioassay were natural estrogens such as El and betaE2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号