首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the results of magnetic, magnetocaloric properties, and critical behavior investigation of the double-layered perovskite manganite La1.4(Sr0.95Ca0.05)1.6Mn2O7. The compounds exhibits a paramagnetic (PM) to ferromagnetic (FM) transition at the Curie temperature T C = 248 K, a Neel transition at T N = 180 K, and a spin glass behavior below 150 K. To probe the magnetic interactions responsible for the magnetic transitions, we performed a critical exponent analysis in the vicinity of the FM–PM transition range. Magnetic entropy change (??S M) was estimated from isothermal magnetization data. The critical exponents β and γ, determined by analyzing the Arrott plots, are found to be T C = 248 K, β = 0.594, γ = 1.048, and δ = 2.764. These values for the critical exponents are close to the mean-field values. In order to estimate the spontaneous magnetization M S(T) at a given temperature, we use a process based on the analysis, in the mean-field theory, of the magnetic entropy change (??S M) versus the magnetization data. An excellent agreement is found between the spontaneous magnetization determined from the entropy change [(??S M) vs. M 2] and the classical extrapolation from the Arrott curves (µ0H/M vs. M 2), thus confirming that the magnetic entropy is a valid approach to estimate the spontaneous magnetization in this system and in other compounds as well.  相似文献   

2.
We present an extensive study of the magnetic properties of a novel La0.5Ba0.5MnO3 perovskite material prepared by the hydrothermal method. The explored sample was structurally studied by the x-ray diffraction (XRD) method which confirms the formation of a pure cubic phase of a perovskite structure with Pm3m space group. The magnetic properties were probed by employing temperature M (T) and external magnetic field M (μoH) dependence of magnetization measurements. A magnetic phase transition from ferromagnetic to paramagnetic phase occurs at 339 K in this sample. The maximum magnetic entropy change (\(\left | {{\Delta } S}_{M}^{\max } \right |\)) took a value of 1.4 J kg??1 K??1 at the applied magnetic field of 4.0 T for the explored sample and has also been found to occur at Curie temperature (TC). This large entropy change might be instigated from the abrupt reduction of magnetization at TC. The magnetocaloric effect (MCE) is maximum at TC as represented by M (μoH) isotherms. The relative cooling power (RCP) is 243.2 J kg??1 at μoH =?4.0 T. Moreover, the critical properties near TC have been probed from magnetic data. The critical exponents δ, β, and γ with values 3.82, 0.42, and 1.2 are close to the values predicted by the 3D Ising model. Additionally, the authenticity of the critical exponents has been confirmed by the scaling equation of state and all data fall on two separate branches, one for T < TC and the other for T > TC, signifying that the critical exponents obtained in this work are accurate.  相似文献   

3.
La0.45Dy0.05Ca0.5Mn0.9V0.1O3, prepared by solid-state route, was characterized using x-ray diffraction at room temperature. The Rietveld refinement shows that the sample crystallizes in orthorhombic structure with Pbnm space group. A secondary phase LaVO4 has been also detected. The temperature dependence of the magnetization was investigated to determine the characteristics of the magnetic transition. The sample exhibits a paramagnetic-ferromagnetic transition (PM-FM) at T C = 81 ± 0.7 K when temperature decreases. The study of the inverse of susceptibility reveals the presence of ferromagnetic clusters in the paramagnetic region. A metamagnetic transition was observed from the M(H) curves and the magnetic entropy change was calculated from magnetization curves at different temperatures in order to evaluate the magnetocaloric effect.  相似文献   

4.
The magnetic properties and the critical behavior in Sr1.5Nd0.5MnO4 have been investigated by magnetization measurements. The magnetic data indicate that the compound exhibits a second-order phase transition. The estimated critical exponents derived from the magnetic data using various techniques such as modified Arrott plot, Kouvel–Fisher method, and critical magnetization isotherms M (T C, H). The critical exponent values for this compound was found to match well with those predicted for the mean-field model (δ = 2.212 ± 0.124, γ = 0.975 ± 0.018, and β = 0.502 ± 0.012) at T C = 228.59 ± 0.17. The critical exponent γ is slightly inferior than predicted from the mean-field model. Such a difference may be due, within the context of the quenched disorder and essentially the presence of the Griffiths phase. The temperature variation in the effective exponent (γ eff) is similar to those for disordered ferromagnets.  相似文献   

5.
The effects of Ba 2+ doping on the electrical and magnetic properties of charge-ordered Pr0.6Ca0.4MnO3 were investigated through electrical resistivity and AC susceptibility measurements. X-ray diffraction data analysis showed an increase in unit cell volume with increasing Ba 2+ content indicating the possibility of substituting Ba 2+ for the Ca-site. Electrical resistivity measurements showed insulating behavior and a resistivity anomaly at around 220 K. This anomaly is attributed to the existence of charge ordering transition temperature, \(T^{\mathrm {R}}_{\text {CO}}\) for the x = 0 sample. The Ba-substituted samples exhibited metallic to insulator transition (MI) behavior, with transition temperature, T MI, increasing from ~98 K (x = 0.1) to ~122 K (x = 0.3). AC susceptibility measurements showed ferromagnetic to paramagnetic (FM-PM) transition for Ba-substituted samples with FM-PM transition temperature, T c, increasing from ~121 K (x = 0.1) to ~170 K (x = 0.3), while for x = 0, an antiferromagnetic to paramagnetic transition behavior with transition temperature, T N, ~170 K was observed. In addition, inverse susceptibility versus T plot showed a deviation from the Curie–Weiss behavior above T c, indicating the existence of the Griffiths phase with deviation temperature, T G, increasing from 160 K (x = 0.1) to 206 K (x = 0.3). Magnetoresistance, MR, behavior indicates intrinsic MR mechanism for x = 0.1 which changed to extrinsic MR for x > 0.2 as a result of Ba substitution. The weakening of charge ordering and inducement of ferromagnetic metallic (FMM) state as well as increase in both T c and T MI are suggested to be related to the increase of tolerance factor, τ, and increase of e g ?electron bandwidth as average ionic radius at A-site, <r A> increased with Ba substitution. The substitution may have reduced MnO6 octahedral distortion and changed the Mn–O–Mn angle which, in turn, promotes itinerancy of charge carrier and enhanced double exchange mechanism. On the other hand, increase in A-site disorder, which is indicated by the increase in σ 2 is suggested to be responsible for the widening of the difference between T c and T MI.  相似文献   

6.
Structural, magnetic, magnetocaloric, and electrical properties are reported for mixed-valence manganite La0.67Pb0.13Na0.2MnO3. X-ray diffraction reveals that the sample crystallizes in the rhombohedric structure with the R-3c space group. The magnetic properties of the polycrystalline La0.67Pb0.13Na0.2MnO3 compound are discussed in detail, based on the susceptibility, magnetization, and isotherm. The sample presents a ferromagnetic property with T C= 275 K and a Griffiths phase at T G= 325 K which gives the existence of ferromagnetic clusters in the paramagnetic domain. A large deviation is usually observed between field cooled (FC) and zero field cooled (ZFC). M(T) is a low temperature below the blocking temperature. At 40 K, a spin-glass or a cluster-glass state is seen to arise from a ferromagnetic state. This is caused by the competition between the antiferromagnetic and ferromagnetic interactions. The electrical properties show the presence of a metal–semiconductor transition at T M?Sc. To understand the dependence of disorder with the transport mechanism, we used the phenomenological equation for resistivity under a percolation approach, which is dependent on the phase segregation of a paramagnetic semiconductor and ferromagnetic metallic regions.  相似文献   

7.
In a temperature range of 80–400 K, electrical and magnetic properties of layered compounds TlCrS2 and TlCrSe2 are investigated. It is shown that these compounds are p-type semiconductors and possess ferromagnetic ordering with T C ~90 and 105 K, respectively.  相似文献   

8.
A systematic study on the effect of monovalent cation doping on structural, magnetic, and magnetocaloric properties of Pr0.85 A 0.15MnO3 (A = Ag and K) samples synthesized by a sol-gel method has been carried out. The crystal structure and morphology have been worked by X-ray diffraction (XRD) and scanning electron microscopy (SEM) imaging measurements. The XRD results indicate that both samples have orthorhombic structure. Magnetization versus temperature measurements show that our samples display a ferromagnetic-to-paramagnetic phase transition with increasing temperature. The ferromagnetic-to-paramagnetic phase transition temperature (T C) values were found as 74 and 116 K for Pr0.85Ag0.15MnO3 and Pr0.85 K 0.15MnO3, respectively. The magnetic entropy changes were evaluated from isothermal magnetization curves measured at various temperatures near T C by steps of 4 K. The values of the magnetic entropy change were determined as 0.99 and 1.39 J kg ?1 K ?1 for Pr0.85Ag0.15MnO3 and Pr0.85 K 0.15MnO3 under external field changes of 10 kOe, respectively.  相似文献   

9.
We report the synthesis of a single-phase rare-earth perovskite ErFe0.75Cr0.25O3 polycrystalline and its magnetic properties. A transition occurs at temperature T N = 120 K below which we observe a weak magnetic moment from the canted antiferromagnetism. Interestingly, ErFe0.75Cr0.25O3 reveals the compensation-like behavior at T comp?like = 27 K, where the net magnetic moments of transition-metal ions are antiparallel and equal to the induced net moment of Er3+ ions, and the paramagnetic contribution of Er3+ moment presenting a nonzero magnetization. The temperature-dependent magnetization measurement shows a spin reorientation transition from Γ4 to Γ1 at 6 K. Furthermore, it is also observed that there is a spin-flop transition at low temperature induced by external magnetic field in Γ1 state (antiferromagnetic state). The interaction between (Fe/Cr)-3d and Er-4f electrons drives an extremely interesting spin reorientation transition which is highly sensitive to magnetic field and temperature.  相似文献   

10.
The critical behavior of perovskite manganite La0.67Ba0.33Mn0.95Fe0.05O3 at the ferromagnetic–paramagnetic has been analyzed. The results show that the sample exhibited the second-order magnetic phase transition. The estimated critical exponents derived from the magnetic data using various such as modified d’Arrott plot Kouvel–Fisher method and critical magnetization M(T C, H). The critical exponents values for the La0.67Ba0.33Mn0.95Fe0.05O3 are close to those expected from the mean field model β = 0.504 ± 0.01 with T C = 275661 ± 0.447 (from the temperature dependence of the spontaneous magnetization below T C ), γ = 1.013 ± 0.017 with T C = 276132 ± 0.452 (from the temperature dependence of the inverse initial susceptibility above T C ), and δ = 3.0403 ± 0.0003. Moreover, the critical exponents also obey the single scaling equation of M(H, ε) = |ε| β f ±(H/|ε| β+γ ).  相似文献   

11.
Modification of σ and π bands was studied in MgB2 by doping 3, 6 and 9 wt% of C and Fe, respectively. The samples synthesized by a solid-state route were characterized by XRD, and magnetization (M) and resistivity (ρ) measurements were in the temperature range (T) 4.2–300 K and magnetic field range (B) 0–12 T, respectively. The decrease (increase) of the lattice parameter a with C (Fe) doping, consistent with B (Mg) site substitution, confirms the expected changes in σ (π) bands. This is supported by the fact that normal-state ρ(T) of all the samples can be fitted by a two-band model and the scattering rates in both the bands are found to be dependent on the dopant. The influence of C and Fe doping on various superconducting properties of the host MgB2 is also found to be significantly different. For instance, in the presence of magnetic field, Fe doping shows a much larger broadening of the superconducting transition when compared to C doping. The critical current density (J C(B)) at 4.2 K vanishes for C (Fe) doping at around T~12 (~3). It is shown that the band modification and the superconducting properties are correlated.  相似文献   

12.
(CeO2)14Fe86 films were fabricated by a radio frequency magnetron sputtering method at different substrate temperature. The results reveal that the films deposited at substrate temperature lower than 773 K exhibit a strong perpendicular anisotropy, and the correlated dynamic permeability spectrum measured over the frequency range of 0.5–7 GHz shows a high resonance frequency. The study on the relation RT shows that the resistivity of the thin film has a minimum near room temperature and tends to saturation as the temperature approaches zero, exhibiting a behavior reminiscent of Kondo scattering. However, as the substrate temperature increases to 973 K, the films possess an in-plane anisotropy and lower H c. The resistivity exhibits a transition from metal to insulator characterized by a maximum of resistivity at 220 K.  相似文献   

13.
Two-layer epitaxial heterostructures (30 nm)La0.67Ca0.33MnO3/(30 nm)La0.67Ba0.33MnO3 (LCMO/LBMO) have been grown by laser deposition on single crystal (001)LaAlO3 (LAO) substrates. In this system, the upper (LCMO) layer occurs under the action of tensile stresses in the substrate plane, whereas the lower (LBMO) layer exhibits biaxial compression. The formation of a 30-nm-thick LCMO film on the surface of the 30-nm-thick LBMO layer leads to an increase in the level of mechanical stresses in the latter layer. The maximum electric resistivity ρ of the (30 nm)LCMO/(30 nm)LBMO/LAO structure was observed at a temperature 25–30 K below that corresponding to the maximum of the ρ(T) curve for a single (30 nm)LBMO film on the same LAO substrate.  相似文献   

14.
Single phase samples of Ni(Cr1?xMn x )2O4 (x = 0–0.50) were synthesized by using sol–gel route. Investigation of structural, magnetic, exchange bias and magnetization reversal properties was carried out in the bulk samples of Ni(Cr1?xMn x )2O4. Rietveld refinement of the X-ray diffraction patterns recorded at room temperature reveals the tetragonal structure for x = 0 sample with I41/amd space group and cubic structure for x ≥ 0.05 samples with \( {\text{Fd}\bar{3}\text{m}} \) space group. Magnetization measurements show that all samples exhibit ferrimagnetic behavior, and the transition temperature (TC) is found to increase from 73 K for x = 0 to 138 K for x = 0.50. Mn substitution induces magnetization reversal behavior especially for 30 at% of Mn in NiCr2O4 system with a magnetic compensation temperature of 45 K. This magnetization reversal is explained in terms of different site occupation of Mn ions and the different temperature dependence of the magnetic moments of different sublattices. Study of exchange bias behavior in x = 0.10 and 0.30 samples reveals that they exhibit negative and tunable positive and negative exchange bias behavior, respectively. The magnitudes of maximum exchange bias field of these samples are found to be 640 and 5306 Oe, respectively. Exchange bias in x = 0.10 sample originates from the anisotropic exchange interaction between the ferrimagnetic and the antiferromagnetic components of magnetic moment. The tunable exchange bias behavior in x = 0.30 sample is explained in terms of change in domination of one sublattice moment over the other as the temperature is varied.  相似文献   

15.
We report on superconducting properties of high-quality single crystals of F-substituted NdOBiS2 using low-temperature magnetization and transport measurements. Using the mixture of CsCl and KCl as the flux, we have synthesized our single crystals. This compound exhibits bulk superconductivity with a transition temperature of about T c~4.6 K. The critical current density J c as a function of temperature has been derived and decreases with the increasing temperature. We construct the phase diagram H c2(T). The zero-temperature value for \(H_{\mathrm {c2}}^{B\parallel c}\) for value for \(T_{c}^{90~\%}\) and \(T_{c}^{0~\%}\) is estimated to be approximately 2.17 and 1.72 T respectively by using Werthamer-Helfand-Hohenberg model.  相似文献   

16.
We studied nearly optimally Ni-substituted BaFe2?x Ni x As2 (BFNA) single crystals with T C ≈ 18.5 K. In irreversible magnetization measurements, we determined the field dependence of the critical current density and discuss the nature of observed strong bulk pinning. Using intrinsic multiple Andreev reflections effect (IMARE) spectroscopy, we directly determine two distinct superconducting gaps and resolve their moderate anisotropy in the momentum space. The BCS-ratio for the large gap 2Δ L /k B T C > 4.1 evidences for a strong coupling in the Δ L -bands.  相似文献   

17.
The Dy2Ge2O7 and Ho2Ge2O7 pyrogermanates have been prepared by solid-state reactions in several sequential firing steps in the temperature range 1237–1473 K using stoichiometric mixtures of Dy2O3 (or Ho2O3) and GeO2. The heat capacity of the synthesized germanates has been determined as a function of temperature by differential scanning calorimetry in the range 350–1000 K. The experimentally determined C p (T) curves of the dysprosium and holmium germanates have no anomalies and are well represented by the Maier–Kelley equation. The experimental C p (T) data have been used to evaluate the thermodynamic functions of the Dy2Ge2O7 and Ho2Ge2O7 pyrogermanates: enthalpy increment H°(T)–H°(350 K), entropy change S°(T)–S°(350 K), and reduced Gibbs energy Ф°(T).  相似文献   

18.
We report bulk superconductivity at 2.5 K in LaO0.5F0.5BiSe2 compound through the DC magnetic susceptibility and electrical resistivity measurements. The synthesized LaO0.5F0.5BiSe2 compound is crystallized in tetragonal structure with space group P4/nmm and Reitveld refined lattice parameters are a = 4.15(1) Å and c = 14.02(2) Å. The lower critical field of H c1 = 40 Oe, at temperature 2 K is estimated through the low field magnetization measurements. The LaO0.5F0.5BiSe2 compound showed metallic normal state electrical resistivity with residual resistivity value of 1.35 m Ω cm. The compound is a type-II superconductor, and the estimated H c2(0) value obtained by WHH formula is above 20 kOe for 90 % ρ n criteria. The superconducting transition temperature decreases with applied pressure till around 1.68 GPa and with further higher pressures a high- T c phase emerges with possible onset T c of above 5 K for 2.5 GPa.  相似文献   

19.
Magnetic entropy change (?ΔS M ) of Nd0.67 Ba0.33Mn0.98Fe0.02O3 perovskite have been analyzed by means of theoretical models. An excellent agreement has been found between the (ΔSM) values estimated by Landau theory and those obtained using the classical Maxwell relation. In order to estimate the spontaneous magnetization M s pont(T), we used the mean-field theory to analyses the (ΔSM) vs. M 2 data. The obtained M s pont(T) values are in good agreement with those found from the classical extrapolation from the Arrott plots(H/M vs. M 2), confirming that the magnetic entropy is a valid approach to estimate the spontaneous magnetization in our system. At a relatively low magnetic field, a phenomenological model has been used to estimate the values of the magnetic entropy change. The results are in good agreement with those obtained from the experimental data using Maxwell relation.  相似文献   

20.
La0.7Ba0.3MnO3 thin films have been epitaxially grown by metal-organic deposition on SrTiO3 (STO) and LaAlO3 (LAO) single-crystal substrates. Temperature dependence of magnetization M(T) and resistivity ρ(T) are used to characterize the Curie temperature (T C) of the ferromagnetic transition. T C is found to be extremely sensitive to the biaxial strain and film thickness. The T C increases gradually by increasing the film thickness on both STO and LAO substrates, but does not reach the value of the bulk material. This behavior is interpreted in terms of lattice strain in the films and correlated to the microstructural properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号