首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The remarkable size-tunable properties of nanoparticles (NPs) make them a hot research topic with applications in a wide range of fields. Hence, copper (Cu) colloidal NPs were prepared using laser ablation (Nd:YAG, 1064 nm, 7 ns, 10 Hz, 6000 pulses) of a copper metal plate at different laser fluences (LFs) in the range of 1–2.5 J cm?2 in ethylene glycol (EG), at room temperature. Analysis of NPs was carried using different independent techniques such as ultraviolet–visible (UV–vis) spectroscopy; transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. TEM analysis showed that the NPs were spherical with a bimodal distribution and an average particle size of 5 and 16 nm influence of 1.2 J cms?2, and 9 and 22 nm at 2 J cm?2. The UV–vis spectra of colloidal NPs revealed the maximum absorbance at around 584 nm, indicating the formation of Cu NPs, which supported using FTIR spectra. Furthermore, the absorption spectra confirmed the metallic nature of Cu NPs. FTIR spectroscopy was utilized to verify information about the NPs surface state and chemical bonds constructed in the atom groups apparent on their surface.  相似文献   

2.
Colloidal spherical nanoparticles (NPs) of cadmium selenide (CdSe) have been prepared by laser ablation of cadmium target in methanol and toluene solutions. The properties of CdSe nanoparticles ablated in methanol and toluene were investigated and compared. The morphology and structure of synthesised CdSe NPs were analyzed by X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscope (TEM). XRD investigation revealed that the nanoparticles are crystalline and have hexagonal structure. Optical absorption showed that the value of optical energy gap of ablated CdSe nanoparticles depends on the solution type. TEM measurements showed that CdSe NPs with diameters ranging from 25 to 35 nm were synthesised in methanol while, the nanoparticles ablated in toluene have diameters in the range of (40–50) nm.  相似文献   

3.
In this paper thin film of silicon nanoparticles on glass substrates have been prepared by dip-coating method using colloidal silicon nanoparticles generated by nanosecond laser ablation of silicon wafer in ethanol. The resulting nanoparticles and structural properties and morphology of thin film were characterized by UV-Visible absorption spectrometry, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction pattern and atomic force microscopy image. Nanoparticles with diameters ~ 9 nm were observed to be formed in the colloidal solution. The atomic force microscopy image of Si nanoparticles thin film shows that the overall average width is about 80 nm.  相似文献   

4.
A simple and effective solution route for synthesizing colloidal indium oxide (In2O3) nanocrystallites, i.e. laser ablation in liquid (LAL), is reported. The morphology and chemical structure of the as-prepared samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectra (XPS). The results showed the formation of In2O3 nanoparticles with a bimodal distribution, consisting mainly of particles of small diameters (2-5 nm). Sensor devices prepared by spraying directly the LAL colloidal solutions on interdigitated alumina substrates exhibited good sensing properties for the detection of CO at very low concentrations.  相似文献   

5.
《Nanostructured Materials》1998,10(5):853-863
We study a new method for producing ultrafine metal particles (nanopartides) that employs Laser Ablation of Microparticles (LAM). Pulsed excimer laser radiation at 248 nm wavelength was used to ablate ~2 μm feedstock of silver, gold, andpermalloy (Ni81%:Fe19%) under both normal atmospheric conditions and in other gases and pressures. A model for nanoparticle formation by LAM is proposed that includes plasma breakdown and shock-wave propagation through the initial microparticle. Behind the shock a large fraction of the original microparticle mass is converted to nanoparticles that diffuse to silicon substrates and TEM grids for collection and analysis. Nanoparticle morphologies are spherical except for gold nanoparticles >100 nm that are generally cubes. Electron micrographs of the samples were analyzed by computer-aided image processing to determine the effect of irradiation conditions on the nanoparticle size distribution. The results showed that mean particle diameters were normally in the range from 10 to 100 nm and that the particle size distributions were generally log-normal, with dispersion (diameter/standard deviation) ranging from 0.2 to 0.5. For metallic microparticle feedstock, the mean size of the produced nanoparticles generally increased with increasing laser fluence and were smallest for fluences not too far above the breakdown threshold.  相似文献   

6.
Zinc nanoparticles in solution by laser ablation technique   总被引:1,自引:0,他引:1  
Colloidal zinc metallic nanoparticles are synthesized using pulsed laser ablation of metal plate in an aqueous solution of suitable surfactant to prevent aggregation. UV-visible absorption, TEM, small angle X-ray diffraction and wide-angle X-ray diffraction are used for the characterization of colloidal zinc metallic nanoparticles. Colloidal nanoparticles are found highly stable for a long time.  相似文献   

7.
In this work, preparation and characterization of α-Bi2O3 by pulsed laser ablation in water under effect of electric field is presented. UV–visible measurements showed that a red shift in the absorption spectra of Bi2O3 nanoparticles (NPs) was observed when the electric field increased. Applying electric field during laser ablation of Bi2O3 led to increasing the particle size. The morphological investigation, carried out using atomic force microscope, showed that the root mean square roughness and the grain sizes of Bi2O3 NPs are increase after applied of the electric field. Energy dispersive X-ray investigations confirm the complete oxidation of ablated bismuth after applying of electric field. X-ray diffraction patterns revealed that the structure of Bi2O3 remained polycrystalline with small diffraction intensity around (102) plane after applying of electric field.  相似文献   

8.
CdS and Gd-doped CdS nanoparticles have been synthesized by chemical precipitation technique. The X-ray diffraction patterns show that the CdS and Gd-doped CdS nanoparticles exhibit hexagonal structure. The high resolution transmission electron microscope image shows that CdS and Gd-doped CdS nanoparticles have particle size lying in the range of 3.5 to 4.0 nm. Raman spectra show that 1LO, 2LO and 3LO peaks of the Gd-doped CdS nanoparticles are slightly shifted to lower wavenumber side when compared to that of CdS. Optical absorption spectra of Gd-doped CdS nanoparticles shows that absorption edge is slightly shifted towards longer wavelength side (red shift) when compared to that of CdS and this shift is due to the quantum confinement effect present in the samples.  相似文献   

9.
Oriented thin (≈2 μm) films, CdS, prepared by laser ablation were characterized by the dependence of external and internal reflection on both the angle of incidence and the polarization of laser light. The samples exhibit perpendicular and parallel orientation of the crystallographic axis with respect to the surface of the glass substrate. The experiments were performed at 300 K using low intensity (<1 W/cm2) cw emissions at 476.5, 514.5 and 632.8 nm of argon and He–Ne lasers respectively. For blue and green light, the results are very well described by the theoretical models based on Fresnel reflection. In contrast to the external features, the internal reflectance exhibits dichroism and birefringence of the samples at 514.5 nm, revealing the sensitivity of the internal reflection technique to the optical anisotropy of the films. Considering multiple-beam interference, the model of Fresnel also describes satisfactorily the results for red light. However, a rather sensitive dependence on the incoming He–Ne laser intensity was observed. In fact, by increasing the intensity of 64 mW/cm2 by about one order of magnitude, only the external reflectance shows good agreement with the theory, whereas the internal reflection properties are obviously influenced by additional effects, such as non-linear change of the optical constants, which are not included in Fresnel reflection considerations.  相似文献   

10.
Permalloy (NiFeMo) nanoparticles were fabricated by laser ablation of bulk material in water with a UV pulsed laser. Transmission electron microscope images showed that approximately spherical particles about 50 nm in diameter were formed in the ablation process. All diffraction peaks corresponding to the bulk material were present in the nanoparticles. In addition to these peaks several new peaks were observed in the nanoparticles, which were attributed to nickel oxide.  相似文献   

11.
This paper describes the optical and structural properties of CdS nanoparticles during their growth in paraffin hot-matrix containing stearic acid ligand. The nanocrystalline species are characterized with absorbance and photoluminescence spectroscopy, fluorescence microscopy, High-Resolution Transmission Electron Microscopy and X-ray diffraction. The nanoparticles size-distribution, Stokes shift and mean molar concentration are derived from the optical spectra as functions of time. Their time evolution confirms a two-stage nanocrystal growth for CdS. The stability of aggregates of stearate-coated nanoparticles, tested against UV-illumination, shows that the band-edge emission is more sensitive to photo bleaching than the trap-state emission. The obtained new quantitative results are important for the large-scale manufacturing of CdS nanoparticles and their practical applications.  相似文献   

12.
The structural, optical, and nonlinear optical properties of the manganese nanoparticles prepared by laser ablation in various liquids were investigated using the 532 and 1064 nm, 50 ps laser pulses. The TEM and spectral measurements showed temporal dynamics of size distribution of Mn nanoparticles in solutions. The nonlinear absorption (β = 2 × 10−10 and 4 × 10−11 cm W−1) and positive nonlinear refraction (γ = 8 × 10−15 and 2 × 10−14 cm2 W−1) of picosecond radiation were observed in the Mn colloidal suspensions using the 1064 and 532 nm radiation, respectively  相似文献   

13.
Chromia (Cr2O3) nanoparticles were prepared by urea forced hydrolysis in the presence of chromium (III) nitrate using NaCl as a precipitating agent. The size, distribution, and purity of the particles were evaluated. The necessity of polyvinylpyrrolidone (PVP) as a surfactant to prevent aggregation was also investigated. In the presence of PVP, non-aggregated spherical-like nanoparticles (3 ± 1 nm) were formed, whereas in the absence of PVP, spherical-like weakly agglomerated nanoparticles (85 ± 16 nm) comprised of 10 nm nanoparticle subunits were produced, creating a large surface area. The as-formed hydrated Cr2O3 nanoparticles were amorphous, although they could be easily converted into crystalline form by heating to 400 °C for 1 h, with minimal particle aggregation and size reduction. Attenuated total reflectance Fourier transform infrared spectroscopy indicated that preparation methods (surfactant and precipitating agent) influence surface reactivity of the nanoparticles to catechol.  相似文献   

14.
We report production of nanoparticles of several advanced ceramics (Si3N4, SiC, AlN, and Al2O3) by ablation with femtosecond laser pulses of solid targets submerged in deionized water. The products withstand comparison with commercial nanoparticle suspensions obtained by other techniques as they are analyzed by means of transmission electron microscopy. As compared with metal nanoparticles produced with the same technique, we have found that the overall dependence of mean sizes and distribution widths on the laser fluence is similar. We explain why it is difficult to synthetize very small (<5 nm) and monodisperse particles in terms of ablation mechanism and discuss the aplicability of the technique for industrial production.  相似文献   

15.
We report a detailed study on the synthesis of ultra-small (1–10 nm) colloidal silicon nanoparticles (Si NPs) by ablating porous silicon (pSi) in acetone using femtosecond laser pulses. Porous silicon is considered as a target material for ablation because it contains a large number of light emitting silicon nanoparticles. The pSi samples were prepared by anodic etching of silicon in aqueous HF solution for different etching current densities. Transmission electron microscope measurements confirmed the successful formation of well-isolated spherical silicon nanoparticles. The average size of spherical NPs were estimated to be ~7.6, ~7, and ~6 nm when anodic etching current densities of 5, 10, and 20 mA/cm2 were used respectively for preparing pSi targets. The crystallinity of these Si NPs was confirmed by selective area electron diffraction and Raman spectroscopy measurements. The observed blue shift in the absorption and emission spectra are attributed to reduction in the average particle size with increase in etching current density. These Si NPs may be useful for fabricating low-dimensional microelectronic compatible photonic devices.  相似文献   

16.
We have studied polystyrene (PS)+Au particles nanohybrids. Approximately spherical gold nanoparticles with the average diameter of 15 nm were obtained by laser ablation in a liquid environment. Thus any chemical residue on the particles was eliminated. Focused ion beam (FIB) milling plus scanning electron microscopy (SEM) observation show that Au particles are fairly well dispersed inside the polymer matrix, better than when PS is simply dissolved in a nanoparticle solution. The Au particles concentration as low as 0.15 wt% results in dramatic changes in tribological properties, namely dynamic friction and pin-on-disk wear. Both wear and dynamic friction results are explained in terms of high brittleness of PS, abrasion of Au particles against a ceramic indenter, and also effects of density of filler particles in the matrix on tribological properties. Effects of varying normal load on friction are small.  相似文献   

17.
We present synthesis of silicon nanoparticles dispersed in toluene by laser ablation and studies on their optical limiting properties with nanosecond laser pulses at 532 nm. Silicon nanoparticles in toluene show better optical limiting compared to standard optical limiter fullerene C60 in toluene. Optical limiting threshold of silicon nanoparticles is about three times less than that of C60. Detailed studies using Z-scan experiments, angle dependent scattering, intensity dependent transmission and temporal profile measurements indicate that apart from non-linear scattering, nonlinear absorption and nonlinear refraction also contribute to the optical limiting behavior of silicon nanoparticles.  相似文献   

18.
The effect of laser energy density, during pulsed laser ablation, on the microstructure and optical properties of silicon films has been investigated using techniques such as atomic force microscopy, scanning electron microscopy, X-ray diffraction, and UV–visible absorption/transmission spectroscopy. The thickness of prepared films increases with increase in laser energy density. The crystallite size and hence the crystallinity of prepared films have been estimated by X-ray diffraction and found to be dependent on laser energy density. The transmittance of films changes with laser energy density. The absorption coefficient of films has been found to be?>104?cm?1 in wavelength region 450–1100?nm. The band gap of silicon films has been determined as 2.27, 2.11, and 1.90?eV corresponding to laser energy density of 1.5, 2.5, and 3.5?J?cm?2, respectively.  相似文献   

19.
We have prepared the hexagonal structure of CdS nanoparticles in an aqueous solution with different sizes and varied surface compositions by using fixed molar ratio of the starting precursors in the presence of capping molecules. In addition, we have prepared uncapped CdS nanoparticles by cadmium chloride and thiourea at low temperature. We showed that the environmental conditions and the type of the aqueous medium are the effective parameters for the exchange of the nanoparticle size. The prepared nanoparticles have sizes in the range from 25 to 100 Å. We have compared the experimentally determined size of CdS nanoparticles with that determined by theoretical calculations. The comparison showed that the size determined by Scherrer’s equation is fitted well with the empirical tight binding calculations, and that the effective mass approximation yields size values is in good agreement with the size estimated by high resolution transmission electron microscopy. Photoluminescence spectroscopy revealed that the nanoparticles with stoichiometries composition S/Cd ~ 1 have a high intensity band edge emission in the blue region for the capped nanoparticles and green emission for the uncapped nanoparticles.  相似文献   

20.
Pulsed laser deposition, under dry and water vapor conditions, was employed to synthesize nanostructured hydroxyapatite films by pulsed laser deposition (PLD) of chlorapatite target for the purpose of coating metallic bone implants by this material. A pulsed Nd:YAG laser operating at a wavelength of 1064 nm and emitting 9 ns pulses was used for deposition. AFM microscopy, FTIR spectroscopy, optical microscopy, adhesion and microhardness measurements were conducted to characterize the films. The in vitro test for the synthesized hydroxyapatite was performed using simulated body fluid (SBF). The results showed a successful transformation of the chlorapatite to hydroxyapatite films characterized by all the HAp peaks with 60 nm root mean square roughness, (80–327) nm grain size, and a microhardness of 512 HV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号