首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 59 毫秒
1.
给出了广义线性互补问题中常用到的广义P0矩阵(P矩阵)的几个性质。这些性质类似于通常的半正定矩阵及正定矩阵的性质。矩阵A∈Rn×n为一个半正定(正定)矩阵时,其对角元素是非负(正)的;具有正对角元素的对角矩阵与一个半正定矩阵(正定)的乘积仍为半正定(正定)矩阵;A∈Rn×n为一个P0(P)矩阵的充分必要条件是对任X∈Rn,X≠0,总存在X的某个分量Xi≠0,有Xi(AX)i≥0(>0);若A∈Rn×n是一个半正定矩阵,E为n阶单位矩,则存在某个t>0,使A+tE为一个正定矩阵;而两个半正定(正定)矩阵之和仍为半正定(正定)矩阵。对于类(m1,…,mn)的竖块矩阵N∈Rm0×n,先给出了N的代表子阵的定义,然后得到了广义P0(P)矩阵与它们类似的几个性质。这些性质为更好地解决广义线性互补问题奠定了一定的基础。  相似文献   

2.
广义P0—矩阵及P—矩阵的几个性质   总被引:1,自引:1,他引:0  
  相似文献   

3.
给出了广义线性互补问题中常用到的广义Z-矩阵及M-矩阵的几个性质。这些性质类似于通常意义下的Z-矩阵及M-矩阵的性质。矩阵A∈R~(n×n)为一个Z-矩阵的充分必要条件是对于某矩阵P∈R~(n×n),P≥0,以及某实数a∈R,使得A=aE-P;A∈R~(n×n)为一个M-矩阵当且仅当A同时为Z-矩阵和P-矩阵;若A是一个Z-矩阵,A是一个具有正对角元的对角矩阵,则M=AA仍是一个Z-矩阵。两个Z-矩阵的和是一个Z-矩阵。对于类(m_1,…,m_n)的竖块矩阵N∈R~(m_0×n),先给出了N的代表子阵的定义,然后得到了广义Z-矩阵及M-矩阵与它们类似的几个性质及其几个等价性结论。这为更好的解广义线性互补问题奠定了一定的基础。  相似文献   

4.
5.
研究P矩阵的新子类S-Nekrasov矩阵和B-S-Nekrasov矩阵误差界的估计问题。利用S-Nekrasov矩阵M和$\mathit{\boldsymbol{\tilde M}}$=I-D+DM的性质,S-Nekrasov矩阵逆矩阵无穷范数的估计式,结合不等式的性质和一定的放缩技巧,得到S-Nekrasov矩阵误差界带有参数的新估计式。最后,用数值算例进一步说明了估计式的可行性和优越性。  相似文献   

6.
定义了一种新型广义Z -矩阵和广义M -矩阵, 并给出了几个F 型广义Z -矩阵和F 型广义M -矩阵的重要性质。F 型广义M-矩阵不仅包括了M-矩阵, 还包括了所有的正矩阵。若非对角元是非正的, 则矩阵A∈ Rn ×n称为Z -矩阵。当且仅当A 是Z -矩阵同时也是P -矩阵时, A∈ Rn ×n称为M -矩阵。对一个方阵进行均分块, 若所有的小方块都是Z -矩阵, 则称此方阵为F 型广义Z -矩阵。对一个方阵进行均分块, 若所有的小块都是M-矩阵, 则称此方阵为F 型广义M -矩阵。得到了F 型广义M-矩阵的一些性质。若M , N ∈ Rn ×n皆为相同分类F 型广义M -矩阵, 则在广义FAN 积定义下, M *N仍为一个该分类的F 型广义M -矩阵。任意一个F 型广义M -矩阵只有唯一的分法使它成为F 型广义M -矩阵。这些性质为更好的解广义线性互补问题奠定了一定的基础。  相似文献   

7.
在M-矩阵和逆M-矩阵的Hadamard积的性质的基础上给出了N0-矩阵的几个性质,并讨论了N0-矩阵和逆M-矩阵Hadamard积的模最小特征值以及N0-矩阵的模最小特征值的估  相似文献   

8.
为了简化多目标二元匹配问题的求解,将该问题建模为多目标非线性0-1规划模型,该模型将变量约束转移到目标函数中,从而降低了问题求解难度.针对该模型,设计了基于熵矩阵计算的贪心近似算法,该算法通过熵矩阵的熵值计算确定多目标二元匹配度,并根据熵值的大小预先优化匹配顺序,从而使近似解更快速地接近最优解.仿真实验结果证明,对于单目标非线性0-1规划问题,本算法优于已有的近似算法,对于多目标非线性0-1规划问题,本算法在计算时间以问题规模的指数级减少的情况下,近似解能够很好地逼近最优解.因此,本算法与其它近似算法相比,在不增加时间复杂度的前提下,结果更优,近似度更高.  相似文献   

9.
再谈广义Z-矩阵及广义M-矩阵的若干性质   总被引:2,自引:0,他引:2  
给出了广义线性互补问题中常用到的广义Z-矩阵及广义M矩阵的若干性质。这些性质主要遗传于通常意义下的Z-矩阵及M-矩阵的性质。根据矩阵论的有关知识,已经知道Z-矩阵及M-矩阵有很多良好的性质,尤其是M-矩阵的等价命题已经研究出几十种。从这些性质中受到启发,得到了广义Z-矩阵及广义M-矩阵与其类似的若干结论,这将为更好的求解广义线性互补问题奠定基础。同时,也会给其他相关领域得到应用,如偏微分方程的有限差分法和有限元素法、经济学中的投入产出、概率统计中的Markov过程等。  相似文献   

10.
11.
首先给出两个矩阵A,B的Hadamard乘积的定义,然后给出M-矩阵在Hadamard积下的几个运算性质,运用矩阵Hadamard乘积及特殊矩阵理论,将M-矩阵在Hadamard积下的若干性质,推广到其他类型的特殊矩阵上。获得了M-矩阵,L-矩阵,H-矩阵和Hermitie-矩阵的几种特征值(q(A),l(A),λ(A))的不等式,以及谱半径ρ(A)、矩阵迹tr(A)满足的几个不等式性质。  相似文献   

12.
设ur(R,S)是所有具有指定行和向量R、列和向量S的(0,1,…,r)一矩阵组成的集合,主要研究ur(R,S)中矩阵的存在性和不可约性,以及(hk,pq)-变换的特点。  相似文献   

13.
采用文献[1]和文献[2]中的方法引入D-环和D^*-环,讨论了D-环的基本性质,并给出了D^*-环的一些不变性质.  相似文献   

14.
Pareto特征值问题是定义在正卦限上一类锥约束问题,在许多领域有着深厚的背景。将讨论Pareto特征值的一些理论性质,包括给定矩阵Pareto特征值范围及个数上界。引进了一类新矩阵,讨论并给出它的部分理论性质,可直接计算其最大Pareto特征值。  相似文献   

15.
设A=(aij)n×n∈Cn×n,如果存在正对角矩阵Λ使得AΛ为不可约对角占优矩阵,则称A为拟不可约对角占优矩阵。如果存在正对角矩阵Λ,使得AΛ为具非零元素链对角占优矩阵,则称A为拟具非零元素链对角占优矩阵。对拟不可约对角占优矩阵、拟具非零元素链对角占优矩阵是非奇异H-矩阵给出了严格证明,最后举例说明了结论的应用。  相似文献   

16.
给出求解一类广义线性互补问题的一个非梯度的神经网络模型.运用Lyapunov稳定性理论和LaSalle不变集原理严格证明,当矩阵M半正定时,网络渐近稳定地收敛于原问题的一个精确解.该模型可以求解线性互补问题,它比已有模型简单,而且,它包括了求解二次优化问题的网络模型.数值模拟表明网络不仅可行而且有效.  相似文献   

17.
文章由共轭转置矩阵,Herm ite矩阵,正定矩阵的概念引出了Herm ite正规矩阵的定义,并对其性质进行了探究。  相似文献   

18.
Z_2~m={(a_1,…,a_m)丨a_i=0或1,i=1,…,m}是 Z_2上的赋范空间,本文从 Z_2~k→Z_2~n的线性算子,推导出二元线性码中重量的某些特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号