首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of a fragmentary model in the analysis of the atomic structure of an Al87Ni10Nd3 amorphous metal alloy made it possible to determine that it has fragments of the structures of three phases, namely, Al, Al3Ni, and Al3Nd. After crystallization of the alloy under the action of pulse photon irradiation, polycrystals of pure aluminum and two Al3Ni and Al4Nd intermetallides were found in it. Because fragments of structure Al4Nd were not observed in the amorphous state, it follows that atoms which form fragments structure Al3Nd rearrange to structure Al4Nd upon crystallization.  相似文献   

2.
In the present study, the crystallization behavior and thermal stability of amorphous Zr55Cu20Ni10Al10Ti5 alloy, obtained by melt-spinning, have been investigated using X-ray diffraction (XRD), differential thermal analysis (DTA) and transmission electron microscopy (TEM). The activation energy for crystallization has been evaluated by the Kissinger method, and it has been found that E x obtained from the crystallization onset temperature (T x) is lower than E p determined by the crystallization peak temperature (T P). During the continuous annealing process, ZrO and h-Al3Zr5 phases firstly precipitate from the amorphous matrix, then Zr2Ni0.66O0.33 phase forms continuously and its relative content increases with increasing annealing temperature. However, no crystalline phases have been observed during the isothermal annealing process at 733 K (below T x) for 90 min. The atomic clusters can keep the stability state through adjusting the short-range ordering.  相似文献   

3.
This paper considers the mechanisms of structure formation during gas detonation spraying of coatings of TiAl3 and Ni3Al intermetallic compounds produced under equilibrium and nonequilibrium synthesis conditions. The coating sprayed from TiAl3 has the same phase composition as the initial powder, regardless of the synthesis conditions. During spraying of Ni3Al, the structure of the coating also does not depend on the synthesis conditions and consists of two phases — Ni3Al and NiAl, with the crystal structure varying along the coating thickness. Comparative impact abrasion tests of the coatings showed advantages of TiAl3 coatings over coatings based on Ni3Al and titanium diboride. __________ Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 5, pp. 106–111, September–October, 2008.  相似文献   

4.
The direct preparation of V-Ti solid solution alloy by coreduction of V2O5 and TiO2 with Al in an attritor mill was investigated. The reduction of V2O5 with Al is highly exothermic, whereas reduction of TiO2 with Al is not sufficiently exothermic for a self-sustaining reaction. A range of compositions of a mixture of V2O5 and TiO2 can be so chosen as to make the overall reduction of V2O5 and TiO2 with Al sufficiently exothermic for a self-sustaining reaction. Initial studies were done to identify the reaction products obtained by reducing V2O5 with Al. The reaction yielded the intermetallic phase (Al3V), V, and Al2O3. SEM images indicated melting and solidification of the phases, leading to agglomeration. Further experiments involved mixing appropriate amounts of TiO2 with V2O5 and reducing the mixture with Al. XRD data for products showed the presence of V, V5Al8, and Al2O3. X-Ray Florescence (XRF) analysis and energy dispersive analyzer (EDAX) of SEM sample images indicated the formation of V-Ti solid solution. Microstructure of the milled charges taken out prior to reaction initiation indicated morphology change in Al powder and agglomeration/segregation of reactants. As a result, the reaction of V2O5 with the excess Al at certain regions also promoted the formation of vanadium aluminide.  相似文献   

5.
A systematic study on the formation and stability of the icosahedral quasicrystalline (IQC) Al70Cu20Fe10 alloy has been carried out using electrothermal explosion (ETE) reaction as a preparation method. The influence of added elements on the formation of icosahedral phase has been investigated by Mössbauer spectroscopy, XRD, and field emission scanning electron microscopy (FESEM). Combined ball milling and ETE reaction (BM-ETE) of Al63Cu25Fe12 composition resulted in the formation of the ICQ Fe10Cu20Al70 phase with a face-centered structure. In all cases, an Al(Cu, Fe) solid solution and β-Fe3Al have been detected along with the ICQ phase. The icosahedral phase appears to form in a peritectoid-type reaction between Fe3Al and Al2Cu. A mechanism for formation of the IQC phase in the Al-Cu-Fe system was suggested. VSM measurements showed the ferromagnetic behavior of the alloy. The Mössbauer measurements in transmission and XRD data showed that the reaction product contained 65% Fe10Cu20Al70 with an admixture of β-Fe3Al and Al2Cu.  相似文献   

6.
Two types of CeO2-modified Ni/Al2O3 catalysts were prepared by a consecutive impregnation method with different sequences in the impregnation of Ni and CeO2, and their performance in autothermal reforming (ATR) of isooctane was investigated. Catalysts prepared by adding CeO2 prior to the addition of Ni, Ni/CeO2-Al2O3, produced larger amounts of hydrogen than those obtained using catalysts prepared by adding the two components in an opposite sequence, Ni-CeO2/Al2O3. The results of H2 chemisorption and temperature-programmed reduction revealed that added CeO2 increased the dispersion of the Ni species on Al2O3 and suppressed the formation of NiAl2O4 in the catalyst such that large amounts of Ni species were present as NiO, the active species for the ATR. The elemental and thermogravimetric analyses of deactivated catalysts indicated that Ni/CeO2-Al2O3, which showed a longer lifetime than Ni-CeO2/Al2O3, contained lesser amounts and different types of coke on the surface.  相似文献   

7.
The catalytic properties of Ni/Al2O3 composites supported on ceramic cordierite honeycomb monoliths in oxidative methane reforming are reported. The prereduced catalyst has been tested in a flow reactor using reaction mixtures of the following compositions: in methane oxidation, 2–6% CH4, 2–9% O2, Ar; in carbon dioxide and oxidative carbon dioxide reforming of methane, 2–6% CH4, 6–12% CO2, and 0–4% O2, and Ar. Physicochemical studies include the monitoring of the formation and oxidation of carbon, the strength of the Ni-O bond, and the phase composition of the catalyst. The structured Ni-Al2O3 catalysts are much more productive in the carbon dioxide reforming of methane than conventional granular catalysts. The catalysts performance is made more stable by regulating the acid-base properties of their surface via the introduction of alkali metal (Na, K) oxides to retard the coking of the surface. Rare-earth metal oxides with a low redox potential (La2O3, CeO2) enhance the activity and stability of Ni-Al2O3/cordierite catalysts in the deep and partial oxidation and carbon dioxide reforming of methane. The carbon dioxide reforming of methane on the (NiO + La2O3 + Al2O3)/cordierite catalyst can be intensified by adding oxygen to the gas feed. This reduces the temperature necessary to reach a high methane conversion and does not exert any significant effect on the selectivity with respect to H2.  相似文献   

8.
Details are given of the synthesis and testing of flux-cast refractory materials in the alumina-rich region of the Al2O3-MgO-B2O3 system; XRD and petrography indicate that the main structure-forming phases are corundum and magnesian spinel. In subordinate amounts there are the boroaluminate 9Al2O3·2B2O3 and the previously unknown compound 4Al2O3·MgO·2B2O3, whose composition has been established by microprobe analysis. Corrosion tests showed that three-component systems containing magnesium and boron oxides at levels of 5–10% do not increase the corrosion resistance of refractories in molten sodium-calcium-silicate glass and electrovacuum borosilicate glass. __________ Translated from Novye Ogneupory, No. 3, pp. 161–163, March, 2008.  相似文献   

9.
To improve the stability of CaO adsorption capacity for CO2 capture during multiple carbonation/calcination cycles, modified CaO-based sorbents were synthesized by sol-gel-combustion-synthesis (SGCS) method and wet physical mixing method, respectively, to overcome the problem of loss-in-capacity of CaO-based sorbents. The cyclic CaO adsorption capacity of the sorbents as well as the effect of the addition of La2O3 or Ca12Al14O33 was investigated in a fixed-bed reactor. The transient phase change and microstructure were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FSEM), respectively. The experimental results indicate that La2O3 played an active role in the carbonation/calcination reactions. When the sorbents were made by wet physical mixing method, CaO/Ca12Al14O33 was much better than CaO/La2O3 in cyclic CO2 capture performance. When the sorbents were made by SGCS method, the synthetic CaO/La2O3 sorbent provided the best performance of a carbonation conversion of up to 93% and an adsorption capacity of up to 0.58 g-CO2/g-sorbent after 11 cycles.  相似文献   

10.
A series of Zr-doped ordered mesoporous Al2O3 with various Zr contents were synthesized by evaporation-induced self-assembly strategy and the Ni-based catalysts supported on these Al2O3 materials were prepared by impregnation method. These catalysts with large specific surface area, big pore volume, uniform pore size possess excellent catalytic performance for the low-temperature carbon dioxide reforming of methane. The activities of these catalysts were tested in carbon dioxide reforming of methane reaction with temperature increasing from 500 to 650?°C and the stabilities of these catalysts were evaluated for long time reaction at 650?°C. It was found that when Zr/(Zr?+?Al) molar ratio?=?0.5%, the Ni/0.5ZrO2–Al2O3 catalyst showed the highest activity, and exhibited superior stabilization compared to the Ni-based catalyst supported on traditional ordered mesoporous Al2O3. The “confinement effect” from mesoporous channels of alumina matrix is helpful to stabilize the Ni nanoparticles. As a promoter, Zr could stabilize the ordered mesoporous framework by reacting with Al2O3 to form ZrO2–Al2O3 solid solution. Since ZrO2 enhances the dissociation of carbon dioxide, more oxygen intermediates are given to remove the carbon formed during the reaction.  相似文献   

11.
Hydrogen production from steam reforming of acetic acid was investigated over Ni/La2O3-ZrO2 catalyst. A series of Ni/La2O3-ZrO2 catalysts were synthesized by sol-gel method coupled with wet impregnation, which was characterized by XRD, BET, TEM, EDS, TG, SEM and TPR. Catalytic activity of Ni/La2O3-ZrO2 was evaluated by steam reforming of acetic acid at the temperature range of 550-750 °C. The tetragonal phase La0.1Zr0.9O1.95 is formed through the doping of La2O3 into the ZrO2 lattice and nickel species are highly dispersed on the support with high specific surface area. H2 yield and CO2 yield of Ni/La2O3-ZrO2 catalyst with 15%wt Ni reaches 89.27% and 80.41% at 600 °C, respectively, which is attributed to high BET surface area and sufficient Ni active sites in strong interaction with the support. 15%wt Ni supported on La2O3-ZrO2 catalyst maintains relatively stable catalytic activities for a period of 20 h.  相似文献   

12.
The phase composition and structure of fusion-cast refractories composed of 57.0 – 84.2% Cr2O3, 4.3 – 36.1% MgO, 2.0 – 9.7% Al2O3, and 2.4 – 6.9% SiO2 have been studied by petrographic and x-ray spectral microprobe analysis methods. Refractories high in MgO with modulus M = (Cr2O3 +Al2O3)/MgO = 1.64 – 3.1 are shown to consist of spinel phase Mg(Cr, Al)2O4 and silicate glass. Refractory materials (80.8 – 84.2% Cr2O3, 4.3 – 4.7% MgO, 2.0 – 9.7% Al2O3, and 2.7 – 6.9% SiO2 with M = 18.7 – 20.2) are three-phase systems composed of spinel, escolaite, and glass phase. These materials, owing to their high corrosion resistance, have promising potentiality for practical applications.__________Translated from Novye Ogneupory, No. 12, pp. 69 – 74, December, 2004.  相似文献   

13.
In this study, innovative TiO2/Al2O3 mono/multilayers were applied by atomic layer depositions (ALD) on ASTM-AZ-31 magnesium/aluminum alloy to enhance its well-known scarce corrosion resistance. Four different configurations of ALD layers were tested: single TiO2 layer, single Al2O3 layer, Al2O3/TiO2 bilayer and Al2O3/TiO2/Al2O3/TiO2 multilayer deposited using Al[(CH3)]3 (trimethylaluminum, TMA), and TiCl4 and H2O precursors. All depositions were performed at 120°C to obtain an amorphous-like structure of both oxide layers. The four coatings were then investigated using different techniques, such as scanning electron microscope (SEM), stylus profilometer, glow discharge optical emission spectrometry (GDOES) and polarization curves in 0.05-M NaCl solution. The thickness of all the coatings was around 100 nm. The layers compositions were successfully investigated by the GDOES technique, although obtained data seem to be affected by substrate roughness and differences in sputtering rates between ceramic oxides and metallic magnesium alloy. Corrosion resistance showed to be strongly enhanced by the nanometric coatings, giving lower corrosion current densities in 0.05-M NaCl media with respect to the uncoated substrate (from 10−4 to 10−6 A/cm2 for the single layers and from 10−4 to 10−8 A/cm2 for the bi- and multilayers). All polarization curves on coated samples also showed a passive region, wider for the bi-layer (from −0.58 to −0.43 V with respect to Ag/AgCl) and multilayer (from −0.53 to −0.38 V with respect to Ag/AgCl) structures.  相似文献   

14.
Hierarchical porous NiO/Al2O3 composites were successfully prepared by two-steps. First, the core-shell structured Al2O3 microspheres were prepared via a template-free hydrothermal route using KAl(SO4)2·12H2O and Al2(SO4)3·18H2O as aluminum source. Then, the NiO/Al2O3 composites with micro- and nano-hierarchical structures were prepared by a hydrothermal method combining the subsequent calcination process. The obtained characterization result presented that the morphology of hierarchical Al2O3 microsphere tuned to irregular platelets by simply varying Ni/Al ratios. The BET analysis showed that the special surface area from 52.12m2 g?1 to 214.8m2 g?1 after two hydrothermal complex process. Effects of Ni/Al ratio, adsorbent dosage, Congo red (CR) concentration, coexisting ions, adsorption time and temperature were investigated. The obtained results indicated that NiO/Al2O3 composite had the high adsorption efficiency (99.6%) and great adsorption capacity (186.9mg g?1) under the optimum conditions. The adsorption isotherm and kinetics data were found to be well fitted and in good agreement with the Langmuir isotherm model and pseudo-second order model, respectively. The hierarchical porous NiO/Al2O3 composites presented remarkably higher adsorption efficiency during five recycling, which showed their potential as the highly efficient adsorbent for removal of CR in wastewater.  相似文献   

15.
A co-precipitation method was employed to prepare Ni/Al2O3-ZrO2, Co/Al2 O3-ZrO2 and Ni-Co/Al2O3-ZrO2 catalysts. Their properties were characterized by N2 adsorption (BET), thermogravimetric analysis (TGA), temperature-programmed reduction (TPR), temperature-programmed desorption (CO2-TPD), and temperature-programmed surface reaction (CH4-TPSR and CO2-TPSR). Ni-Co/Al2O3-ZrO2 bimetallic catalyst has good performance in the reduction of active components Ni, Co and CO2 adsorption. Compared with mono-metallic catalyst, bimetallic catalyst could provide more active sites and CO2 adsorption sites (C + CO2 = 2CO) for the methane-reforming reaction, and a more appropriate force formed between active components and composite support (SMSI) for the catalytic reaction. According to the CH4-CO2-TPSR, there were 80.9% and 81.5% higher CH4 and CO2 conversion over Ni-Co/Al2O3-ZrO2 catalyst, and its better resistance to carbon deposition, less than 0.5% of coke after 4 h reaction, was found by TGA. The high activity and excellent anti-coking of the Ni-Co/Al2O3-ZrO2 catalyst were closely related to the synergy between Ni and Co active metal, the strong metal-support interaction and the use of composite support.  相似文献   

16.
Hydrogen production from glycerol reforming in liquid (aqueous phase reforming, APR) and vapor (steam reforming SR) phase over alumina-supported nickel catalysts modified with Ce, Mg, Zr and La was studied. Characterization of catalysts by temperature programmed reduction and XPS analyses revealed important structural effects: (i) the intercalation of Mg between nickel and alumina that inhibited the alumina incorporation to nickel phases, (ii) the close contact between Ni and Zr phases and, (iii) the close surface interaction of La and Ce ions with NiO phases. The catalytic activity of the samples studied in this work clearly indicated the different catalyst functionalities necessary to carry out aqueous-phase and vapor-phase steam reforming of glycerol. For aqueous phase reforming of glycerol, the addition of Ce, La and Zr to Ni/Al2O3 improves the initial glycerol conversions obtained over the Ni/Al2O3 supported catalyst. It is suggested that the differences in catalytic activities are related with geometric effects caused by the decoration of Ni phases by Ce and La or by the close interaction between Ni and Zr. In spite that nickel catalysts showed high APR activities at initial times on stream, all samples showed, independently of support, important deactivation rates that deactivate the catalysts after few hours under operation. Catalysts characterization after APR showed the oxidation of the active metallic Ni during reaction as the main cause of the observed deactivation. In the case of the glycerol steam reforming in vapor phase, the use of Ce, La, Mg and Zr as promoters of Ni based catalysts increases the hydrogen selectivity. Differences in activity were explained in terms of enhancement in: surface nickel concentration (Mg), capacity to activate steam (Zr) and stability of nickel phases under reaction conditions (Ce and La).  相似文献   

17.
Polycrystalline quasi-crystals of icosahedral Al70Cu20Fe10(i-Al70Cu20Fe10) were prepared by thermal explosion (TE) of mechanically activated mixture of Al, Cu, Fe powders doped with AlCu. The effect of AlCu dopant was studied by XRD, field emission scanning electron (FESEM), optical microscopy (OM), atomic emission spectroscopy (AES), and energy-dispersive X-ray microanalysis (EDX). The synthesized i-Al70Cu20Fe10 and intermetallics (Al3Fe, Al2Cu) show soft ferromagnetic and paramagnetic properties, respectively.   相似文献   

18.
The performance of La0.75Sr0.25Cr0.9M0.1O3 (M = Mn, Fe, Co, and Ni) perovskitic materials as anodes was studied for a CO-fueled solid oxide fuel cell. The electrocatalytic performance and the tolerance to carbon deposition were investigated, while electrochemical characterization was carried out via AC impedance spectroscopy and cyclic voltammetry. The La0.75Sr0.25Cr0.9Fe0.1O3 perovskite showed the best anode performance at temperatures above 900 °C; while at temperatures below 900 °C, the best performance was achieved with the La0.75Sr0.25Cr0.9Co0.1O3 material. AC impedance spectroscopy was used for a semi-quantitative analysis of the LSC-M0.1 anodes performance in view of total cell and charge transfer resistance. All anode materials exhibit high electronic conductivity and presumably do not substantially contribute to the overall cell resistance and concomitant ohmic losses.  相似文献   

19.
Triply and doubly charged states of europium are revealed by 151Eu Mössbauer spectroscopy in the structure of glasses of the composition (mol %) 19.5Al2O3, 31.5SiO2, 26.5MnO, and 22.5Eu2O3. The isomer shifts in the Mössbauer spectra of Eu3+ and Eu2+ ions in the structure of glasses differ from the isomer shifts in the spectra of the Eu2O3 and EuO compounds. This difference is explained by the fact that the electron density at 151Eu nuclei is affected by the manganese and aluminum atoms, which are not bound directly to the europium atoms. The broadening of the spectra of the Eu2+ ions in glasses is caused by the nonuniform isomer shift.  相似文献   

20.
Positive electrode material LiNi1/2Mn1/2O2 was synthesized via the carbonate co-precipitation method and the hydroxide precipitation route to study the effects of the precursor on its structural and electrochemical properties. The results of X-ray diffraction and Rietveld refinement show that the carbonate precursor of Ni2+ and Mn2+ exhibits one phase at a pH of 8.5, while the hydroxide deposit separates into Ni(OH)2 and Mn(OH)2 phases under the same experimental conditions. LiNi1/2Mn1/2O2 material prepared from the hydroxide precursor shows 8.9% Li/Ni exchange and a large capacity loss of 11.3% in the first 10 cycles. By contrast, more uniform distribution of transition metal ions and stable Mn2+ in the carbonate precursor contribute to only 7.8% Li/Ni disorder in the obtained LiNi1/2Mn1/2O2, which delivers a reversible capacity of about 182 mAh g−1 at a current rate of 14 mA g−1 between 2.5 and 4.8 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号