首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 107 毫秒
1.
HNIW的爆燃反应动力学和热分解   总被引:1,自引:1,他引:0  
肖和淼  杨荣杰 《火炸药学报》2005,28(2):39-42,46
组装了一套用于测定含能物质的爆燃延迟期的装置,在507~547K和0.1~9.1MPa下研究了六硝基六氮杂异伍兹烷(HNIW)的爆燃延迟期τ,温度升高使爆燃延迟期τ缩短。在507K和517K温度下,高压(≥5MPa)使爆燃延迟期τ增加;在527K和537K下,压力使爆燃延迟期τ缩短。计算了不同压力下的动力学参数,HNIW的爆燃反应活化能随压力增加而增加,研究了不同温度(≤489K)和压力下HNIW的热分解,压力对HNIW的热分解具有抑制作用。  相似文献   

2.
HNIW单元推进剂燃烧性能研究   总被引:4,自引:1,他引:4  
研究了一些添加剂对HNIW单元推进剂燃烧性能的影响,结果表明HNIW的燃烧受其分解过程的影响较大,在HNIW中加入其分解产物可显著降低其燃烧速度,所试的催化剂均对HNIW单元推进剂的燃烧性能有一定的催化作用。  相似文献   

3.
溶剂及温度对ε-HNIW晶型及热安定性的影响   总被引:9,自引:3,他引:6  
将ε-HNIW分别在水、甲苯、正庚烷、环己烷4种溶剂中于70℃下加热4h后进行傅立叶变换红外光谱(FTIR)测定及差热分析(DTA)。FTIR图谱表明,加热后的ε-HNIW谱图与未经加热的一致,即加热后的HNIW仍为ε型。DTA曲线显示,在2,5,10及20℃/min的升温速率下,加热4h后ε-HNIW的分解峰温与未加热的峰温的改变量ΔTP分别为0~2.6℃、0~2.6℃、1~1.9℃及0~2.5℃。用Kissinger法和Ozawa法对热分解曲线进行热分解唯象动力学处理,求得4种加热后试样的分解表观活化能,且两种方法计算出的结果误差在2%以内。可以认为,ε-HNIW在上述溶剂中于70℃下加热4h后,热安定性没有改变。  相似文献   

4.
三种粒度ε-六硝基六氮杂异伍兹烷热分解及撞击感度研究   总被引:5,自引:2,他引:3  
利用DTA技术研究了三种不同粒度ε-六硝基六氮杂异伍兹烷(ε-HNIW)的热分解,求出了表观动力学参数E、A,测定了相应粒度ε-HNIW的撞击感度,分析了粒度对其热分解唯象动力学参量和撞击感度的影响。  相似文献   

5.
六硝基六氮杂异伍兹烷的热性能研究   总被引:3,自引:0,他引:3  
徐容  陈松林  周建华  田野 《火炸药学报》2002,25(4):25-26,22
叙述了 CL - 2 0热分解反应动力学和热分析研究结果。根据 90~ 14 0℃下真空等温热分解实验数据及相应曲线 ,导出了在不同温度下分解 0 .1%所需时间的经验公式 ,求得 CL- 2 0表观活化能 Ea=187.6 k J/ mol,指前因子 A=6 .9× 10 2 3 ,测得 CL- 2 0相变温度16 3.7℃ ,分解热 2 95 7J/ g,5 s爆发点 2 82 .2℃ ,10 0 0 s临界温度为 2 2 4℃。  相似文献   

6.
金属氧化物对HNIW单元推进剂燃烧的催化研究   总被引:4,自引:1,他引:4  
对六硝基六氮杂异伍兹烷 (HNIW)的催化燃烧进行了初步的实验探讨 ,实验结果表明 ,HNIW单元推进剂的燃烧速度是 HMX单元推进剂燃烧速度的 2倍左右 ,HNIW单元推进剂的燃烧速度随着压力的增加而直线增加 ,其燃速压力指数为 0 .846 ,通过加入金属氧化物可使 HNIW单元推进剂的燃烧速度发生变化 ,但对其燃速压力指数影响不大  相似文献   

7.
四乙酰基二硝基六氮杂异伍兹烷的硝解研究   总被引:2,自引:0,他引:2  
研究了TADN在100%HNO3、P2O5/HNO3、N2O5/HNO3、N2O5/HCCl3、N2O5/CH3NO2、HNO3/PPA以及HNO3/HClO4等7种硝化剂中的硝解,结果表明这7种硝化剂均不适合用来硝解四乙酰基二硝基六氮杂异伍兹烷(TADN)制备六硝基六氮杂异伍兹烷(HNIW),同时发现在有硝酸的硝化剂硝解TADN的过程中均出现了水溶性中间体。  相似文献   

8.
用支化水性聚氨酯包覆HNIW的研究   总被引:3,自引:0,他引:3  
以甲苯二异氰酸酯(TDI)、聚氧化丙烯多元醇(TDB-2000和TMN-450)、双羟甲基丙酸(DMPA)和丁二醇(BDO)为原料,采用丙酮回流法合成了硬段质量分数为45%的支化水性聚氨酯(WBPU),用FT-IR、^1HNMR及DSC对所得产物进行表征。FTIR和^1HNMR图谱显示,所得产物为目标化合物;DSC测试结果显示,合成的支化水性聚氨酯树脂在299℃和380℃出现分解吸热双峰;SEM和FT-Raman光谱显示,制备的支化水性聚氨酯乳液采用破乳法对六硝基六氮杂异伍兹烷(HNIW)进行了包覆;撞击感度试验显示,HNIW包覆后的特性落高由25.1cm提高到31.6cm,表明支化性聚氨酯能降低HNIW的冲击感度。  相似文献   

9.
用差示扫描量热法(DSC)研究了六硝基六氮杂异伍兹烷(HINW,CL–20)、黑索今(RDX)及CL–20/RDX混合体系的热分解行为,分别用Kissinger法和Ozawa法计算了热分解动力学参数。结果表明:RDX的存在,降低了CL–20的分解峰温;2种动力学计算结果相近,均显示出RDX的存在降低了CL–20表观活化能。  相似文献   

10.
通过用α-糠胺和乙二醛为原料合成了六糠基六氮杂异伍兹烷,对产物进行分离、提纯,目标产物的熔点为98.2~99.5℃。并通过正交实验法考察了温度、pH值、催化剂、时间等对产物收率的影响,确定了在温度为0~5℃、pH值为9~10、催化剂为高氯酸、时间为20h时产物的收率为42%。六糠基六氮杂异伍兹烷是一种新的具有六硝基六氮杂异伍兹烷(HNIW)构型的笼状前体,打破了过去只能用苄胺或取代苄胺来合成此前体的传统工艺,为两步法合成HNIW提供了有利的条件。即第一步HNIW笼状前体的合成,第二步前体的直接硝化合成HNIW。  相似文献   

11.
Thermal decomposition of hexanitrohexaazaisowurtzitane (HNIW) was investigated through tuneable vacuum ultraviolet photoionization with molecular‐beam sampling mass spectrometry (MBMS). According to photoionization efficiency (PIE) spectroscopic results, the initial decomposition products of HNIW were identified including HCN, CO, NO, HNCO, N2O, CO2 (a little), NO2, C2H2N2, C3H3N3, C4H3N3, C3H4N4, C5H4N4, C5H5N5 and C6H6N6. The possible ionization energies of C2H2N2, C4H3N3, C3H4N4 and C6H6N6 were analyzed on basis of the PIE spectra. The data were compared with those of thermogravimetry‐mass spectrometry (TG‐MS) and thermogravimetry‐Fourier transform‐infrared spectroscopy (TG‐FT‐IR). The kinetic parameters for the formation of HNCO, HCN and CO2 were calculated from the current curves of species by TG‐FT‐IR spectroscopy, typically the apparent activation energy (Ea) and prefactor (A) for HNCO were Ea=161.3 ± 2.5 kJ mol−1 and A=38.9 ± 0.6 s−1 with an optimal mechanism function f(α)=(1−α). Global thermal decomposition reaction and Arrhenius equation of HNIW were suggested at the end.  相似文献   

12.
以 X射线衍射仪测得的晶体学数据计算了六硝基六氮异伍兹烷的四种晶型 (α- HNIW1/ 2 H2 O,β- HNIW,γ- HNIW和 ε- HNIW)的晶体密度 ,同时根据 GJB772 A- 97,40 1.1所规定的密度瓶法实测了上述四者的密度。计算值分别为 1.992 g/ cm3 、1.989g/ cm3 、1.918g/ cm3 及 2 .0 44 g/ cm3 ,实测值分别为 1.937g/ cm3 、1.983g/ cm3 、1.918g/ cm3 及 2 .0 35 g/ cm3 ,计算值比实测值分别高 0 .0 5 5 g/ cm3 、0 .0 0 6g/ cm3 、0 g/ cm3 及 0 .0 0 9g/ cm2 。  相似文献   

13.
A simple method for purifying crude hexanitrohexaazaisowurtzitane (HNIW or CL20) to analytical purity is described. This involves filtering a solution of HNIW in heptane / ethyl acetate through a column of Darco activated carbon type G‐60 (∼20 g carbon/g HNIW). The method works extremely well for HNIW derived from 4,10‐diformyl‐2,6,8,12‐tetraacetylhexaazaisowurtzitane (final purity>99.95%, ∼90% recovery), and reasonably well for HNIW derived from 4,10‐dibenzyl‐2,6,8,12‐tetraacetylhexaazaisowurtzitane.  相似文献   

14.
The thermal decomposition kinetics of different polymorphs of CL‐20 (α, γ and ε) has been investigated by thermogravimetry, IR spectroscopy and optical and electronic microscopy. The reactions proceed with self‐acceleration and can be described by a kinetic law of first order with autocatalysis. Already at the earliest stages of decomposition (≤1%) phase transitions take place from αγ and from εγ. For this reason the observed decomposition is related to the decomposition of γ‐CL‐20. On the other hand, the kinetics of decomposition depends on the initial polymorphic state, so that the thermal decomposition increases in the series: α<γ<ε. Experiments with different samples of α‐CL‐20 demonstrate that different rates of decomposition are observed for the same polymorph depending on the mean size and the size distribution of the crystals and their morphological features. In some cases the thermal stability of α‐CL‐20 can be increased by previous annealing. It is concluded that the thermal decomposition of CL‐20 is purely a solid‐state process. Microscopical and spectroscopical analysis of the condensed CL‐20 decomposition product (formed after prolonged heating at high temperature) show that it has a network structure and consists mainly of carbon and nitrogen.  相似文献   

15.
通过四氯化钛与酒石酸反应,制得了新的固态配合物Ti2O2(OH)2C4H4O6·3H2O。用元素分析、X-射线粉末衍射,IR和TG分析确定了产物的组成。TG和DSC研究了它在空气氛围下的热分解特性,计算机求解热分解反应各阶段的活化能Ea,反应级数n、焓变面△rH和熵变面△rS。在550℃灼烧1小时,可得锐钛型TiO2。  相似文献   

16.
Measurements of chemiluminescence (CL) during heating of nitrate esters (PETN and NC) have been conducted in the temperature range between 40 °C and 90 °C in an inert atmosphere. Faint light was emitted from the condensed-phase in steady-state fashion. This new finding implies that the thermal decomposition of nitrate esters is accompanied by some oxidation reactions. Spectral analysis of the CL showed that the light-emitting species will be the first excited triplet of carbonyl-containing products and singlet oxygen. The low-temperature CL phenomena observed for PETN and NC are represented by Arrhenius law, providing the activation energy of 63 kJ/mol (= 15 kcal/mol). Kinetic analysis of the CL has led to the result that the formation of peroxy radicals, which can be produced by oxidation of the primary products of nitrate ester bond (RO NO2) cleavage, predominates a consecutive series of radical reactions of the CL.  相似文献   

17.
红外光谱联用技术在材料热分解研究中的应用   总被引:1,自引:0,他引:1  
介绍了傅里叶变换红外光谱技术和固体原位反应技术、快速热裂解原位反应技术以及热分析技术的联用在实时监测材料受热分解过程中凝聚相中间产物、终态产物和气相产物的组成以及分解起始温度点和温度范围方面的应用,提供了一种切实可行的材料热分解机理研究方法。  相似文献   

18.
Kinetics of the thermal decomposition of pentaerythritol tetranitrate (PETN) in condensed state has been investigated by high temperature infrared spectroscopy (IR) and thermogravimetry (TG) in conjunction with pyrolysis gas analysis, differential thermal analysis (DTA) and hot-stage microscopy. Kinetics of thermolysis has been followed by IR after suppressing volatilization by matrixing and by isothermal TG without suppressing volatilization to simulate actual user conditions. The best linearity was obtained for Avrami-Erofe'ev equation, n=1, in IR and isothermal TG. Activation energy was found to be 152 kJ mol−1 and log A (in s−1) 16.96 by IR. The effect of additives on the initial thermolysis of PETN has been studied. Evolved gas analysis by IR shows that NO2, H2CO are produced in the initial stage of decomposition followed by NO, N2O, CO2, HCN and H2O. The decomposition in KBr matrix shows relative preferential loss in NO2 band intensity which indicates that the rupture of O−NO2 bond is the primary step in the thermolysis of PETN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号