首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
以氯化铁为前驱物,采用溶胶-凝胶法制备了 Al/Fe2O3纳米铝热剂.用XRD、TGA/DSC研究了煅烧温度和煅烧时间对Al/Fe2O3纳米铝热剂晶型结构和热性能的影响.结果表明,在相同煅烧时间内,Al晶粒尺寸随煅烧温度的增加而减小,铝热剂固固反应的放热量先增加后减小;在相同煅烧温度下,Al/Fe2O3热失重随煅烧时间的增加而减小,铝热剂固固反应放热量增加,热失重控制在2.2%以内,铝热剂固-固反应的放热量提高30%.Al/Fe2O3的最佳燃烧温度和燃烧时间为300℃下煅烧5h.  相似文献   

2.
用溶胶-凝胶法结合超临界干燥法,制备了Fe2O3/Al复合含能材料。用SEM、XRD、BET等方法对Fe2O3/Al复合含能材料的结构进行了表征。结果表明,超临界法制备的Fe2O3/Al复合含能材料呈明显的纤维网络状结构;其中Al的平均粒径为40nm;比表面积为147.9m2/g,相比空白Fe2O3气凝胶明显下降,平均孔径为8nm,孔径分布比较均匀。  相似文献   

3.
溶胶-凝胶法制备Fe_2O_3/Al纳米复合材料   总被引:2,自引:1,他引:1  
采用溶胶-凝胶法和真空干燥法制备了Fe2O3/Al纳米复合材料。用扫描电镜、红外光谱、X射线衍射仪(XRD)、BET比表面分析仪对原料和产物的结构和性能进行了表征。结果表明,纳米复合材料的宏观粒子平均粒径为2μm,纳米铝粉均匀分布在Fe2O3凝胶体系中,平均粒径为40nm。空白Fe2O3干凝胶比表面积达64.6m2/g,填充铝粉后样品的比表面积为1.1m2/g。撞击感度试验表明,Fe2O3凝胶与纳米铝粉复合后,特性落高由30.5cm提高到100.3cm,表明FeO凝胶可降低纳米铝粉的冲击感度。  相似文献   

4.
曹卫华 《安徽化工》2008,34(2):31-32
主要研究制备以大孔A12O3,为基载体的负载型纳米FeOZrO2/Al2O3,复合载体.采用溶胶-凝胶法制备负载型纳米FeOZrO2/Al2O3,复合载体.利用比表面、透射电子显微镜(TEM)等对载体催化剂进行了表征.结果表明:负载型纳米FeOZrOJhl203复合载体的比表面积达到76.53 sq·m/g,FeOZrO2/Al2O3,中的FeO粒子约为40nm,较Fe0/Al2O3中FeO的粒子(100nm)小且分布均匀.  相似文献   

5.
机械合金化法制备Fe3Al粉,用凝胶注模成型的方法制备Fe3Al/Al2O3复合材料.结果表明,用凝胶注模成型工艺制备出了Fe3Al/Al2O3复合材料,分散剂MN可以显著提高浆料的固相含量,固相含量对浆料流变性有重要影响,10% Fe3Al/Al2O3坯体的微观结构最均匀.  相似文献   

6.
制备方法对纳米氧化铁晶型的影响   总被引:6,自引:1,他引:6  
分别采用沉淀法,硬脂酸法、聚乙二醇法、柠檬酸法和柠檬酸铁快速燃烧法制备纳米氧化铁晶体,研究了这5种制备方法对粉体晶,平均粒径,磁性,分散性的影响。结果表明,沉淀法制得粒径为8.5nm的α-Fe2O3,柠檬酸铁快速燃烧获得的是Fe3O4的纳米晶,而采用3种溶胶-凝胶法制得的是α-F2O3与λ-Fe2O3的混合晶体。  相似文献   

7.
RDX/Al/Fe2O3纳米复合材料的制备   总被引:2,自引:0,他引:2  
以FeCl3·6H2O和RDX的DMF溶液为前驱体,依次加入环氧丙烷和纳米Al粉,通过Fe2O3由溶胶-凝胶的相变作用,使纳米Al粉和RDx进入Fe2O3凝胶网状结构中,采用超临界干燥法制备出纳米RDX/Al/Fe2O3复合材料,用扫描电镜对其进行了表征.结果表明,随着FeCl3·6H2O摩尔浓度的增加,凝胶时间逐渐缩...  相似文献   

8.
纳米光催化剂TiO_2/Fe_3O_4的制备及表征   总被引:2,自引:3,他引:2  
寇生中  胡聪丽 《应用化工》2008,37(1):67-70,73
采用两步法制备磁性负载纳米光催化剂TiO2/Fe3O4。首先用液相共沉淀法制备磁性纳米Fe3O4颗粒;然后用溶胶-凝胶法,以钛酸四正丁酯为先驱体,通过水解缩聚在Fe3O4纳米颗粒表面包覆TiO2层,得到易于磁分离回收的复合纳米光催化剂TiO2/Fe3O4,粒径大约为30 nm。利用TEM、XRD、FT-IR、VSM对Fe3O4和TiO2/Fe3O4的结构和性能进行了表征,结果表明,制备的Fe3O4为面心立方晶体(FCC)结构,具有超顺磁性;TiO2为锐钛矿相,包覆在Fe3O4的表面,形成了核-壳式结构的TiO2/Fe3O4复合光催化剂。  相似文献   

9.
江涛 《硅酸盐通报》2013,32(9):1882-1887
本实验采用机械合金化工艺结合热处理工艺制备Fe3Al金属间化合物粉末,并将Fe3Al粉末与Al2O3粉末相混合制备Fe3Al/Al2O3复合粉末,并通过热压烧结工艺制备Fe3Al/Al2O3复合材料块材试样,对Fe3Al/Al2O3复合材料的物相组成,显微结构和力学性能进行研究.结果表明采用机械合金化工艺球磨60h后得到Fe-Al金属间化合物粉末.并经过800℃和1000℃热处理后得到Fe3Al金属间化合物粉末.经过热压烧结后得到的Fe3Al/Al2O3复合材料块材主要有Fe3Al相和Al2O3相.Fe3Al/Al2O3复合材料的显微结构均匀致密.Fe3Al晶粒均匀分布在Al2O3基体中,Fe3Al晶粒的平均颗粒尺寸为3~4μm,而Al2O3基体颗粒尺寸为4~5 μm.随着基体中Fe3Al合金含量的增加,Fe3Al/Al2O3复合材料的密度和相对密度逐渐增加;Fe3 Al/Al2O3复合材料的抗弯强度和断裂韧性逐渐增加;Fe3Al/Al2O3复合材料的洛氏硬度和弹性模量逐渐降低.Fe3Al/Al2O3复合材料具有较高的力学性能是由于复合材料具有均匀致密的显微结构.  相似文献   

10.
纳米Fe3O4磁性颗粒的制备及应用现状   总被引:10,自引:0,他引:10  
介绍了纳米Fe3O4磁性颗粒的制备工艺,如机械球磨法、水热法、微乳液法、超声沉淀法、水解法等,归纳了各种制备方法的特点。对Fe3O4颗粒当前的应用热点进行了概述,并对纳米Fe3O4的研究前景进行了展望。  相似文献   

11.
康永 《陶瓷》2020,(1):39-44
纳米材料又称超微颗粒材料,是由纳米粒子组成,具有纳米尺寸效应。纳米材料用于化学反应会呈现出不同寻常的反应性能。磁性纳米材料作为一种新型的纳米材料,具有不同于常规材料的独特效应,如量子尺寸效应、表面效应、小尺寸效应、宏观量子隧道效应及顺磁效应等,这些效应使磁性纳米粒子具有不同于常规材料的光、电、声、热、磁敏感特性。近年来有关磁性纳米材料的研究备受瞩目。特别是Fe3O4纳米晶,由于其优异的磁性和表面活性及其在磁流体、微波吸收材料、水处理、催化、生物医药、生物分离等方面的应用前景,正在成为众多领域研究的热点。基于Fe3O4纳米晶的磁性纳米催化剂兼有了磁性纳米材料的所有独特性能,将其应用于催化领域,会呈现出常规催化材料所不具备的催化性能。目前液相制备Fe3O4纳米晶的液相方法主要有沉淀法、水热法、溶胶-凝胶法、微乳液法、微波超声法等。这几种方法制得的Fe3O4纳米晶有较大的差异,往往因其在不同领域的应用而采用不同的方法制备Fe3O4纳米晶。结合前人研究成果,笔者采用共沉淀法在无氮气保护的条件下制备出了粒径分布在15 nm±4 nm之间的Fe3O4纳米晶。考察了n(Fe^2+)/n(Fe^3+)、晶化时间、晶化温度、pH值对Fe3O4纳米颗粒粒径分布的影响,并在Fe3O4纳米晶表面裹负SiO2,提高了其抗氧化性能并增强其表面修饰性能,为进一步表面裹负金属活性组分制备磁性纳米催化剂打下基础。  相似文献   

12.
张赛  周艺峰 《精细化工》2012,29(6):545-548,553
在超声辅助无惰性气体保护的条件下,采用氧化共沉淀和化学共沉淀相结合的方法成功制备了四氧化三铁纳米粒子。通过XRD、FTIR、SEM和TEM等对其进行表征,结果表明,制备的四氧化三铁纳米粒子具有较好的晶形结构,粒径约为7 nm。通过正交实验证明了超声时间是影响四氧化三铁纳米粒子粒径的主要因素;而Fe2+与Fe3+的摩尔比是影响四氧化三铁纳米粒子粒径的次要因素。用柠檬酸对四氧化三铁进行表面改性,制备了环境友好型水基磁流体;磁性结果显示,其矫顽力及剩磁均很低,表现出较好的超顺磁性。  相似文献   

13.
Wet milling of Al2O3-aluminide alloy (3A) precursor powders in acetone has been investigated by milling Fe/Al/Al2O3 and Fe2O3/Al/Al2O3 powder mixtures. The influence of the milling process on the physical and chemical properties of the milled powders has been studied. Particle refinement and homogenization were found not to play a dominant role, whereas plastic deformation of the metal particles leads to the formation of dislocations and a highly disarranged polycrystalline structure. Although no chemical reactions among the powder components in Fe2O3/Al/Al2O3 powder mixtures were observed, the formation of a nanocrystalline, ordered intermetallic FeAl phase in Fe/Al/Al2O3 powder mixtures caused by mechanical alloying was detected. Chemical reactions of Fe and Al particle surfaces with the atmosphere and the milling media lead to the formation of highly porous hydroxides on the particle surfaces. Hence the specific surface area of the powders increases, while the powder density decreases during milling. The fraction of Fe oxidized during milling was determined to be 0.13. The fraction of Al oxidized during milling strongly depends on the metal content of the powder mixture. It ranges between 0.4 and 0.8.  相似文献   

14.
固体超强酸催化剂S2O2-8/Fe2O3-Al2O3的制备及其酯化性能   总被引:2,自引:0,他引:2  
以硝酸铁为铁源、硝酸铝为铝源,通过共沉淀法制备固体超强酸催化剂S2O2-8/Fe2O3-Al2O3。通过催化剂样品的FT-IR谱图、不同焙烧温度催化剂样品的XRD谱图、不同陈化温度的N2吸附-脱附曲线以及催化剂样品的SEM照片,研究了其晶体的形成过程。催化剂样品红外谱图表明,催化剂中的S=O有较强的共价双键特征,诱导催化剂形成超强酸性;在XRD谱图中既无Al2O3的晶相峰,也无Fe2(SO4)3晶相峰,说明Al2O3与Fe2O3 在催化剂样品的表面形成了Al2O3-Fe2O3 共价键的复杂结构。采用BET方程和BJH模型计算催化剂样品的比表面积和孔径分布,经冰水陈化的催化剂样品平均孔径为9.1 nm,最可几孔径为7.5 nm,比表面积为78.9 m2·g-1,孔容0.149 cm3·g-1。研究了催化剂的铁与铝物质的量比、(NH4)2S2O8浸渍浓度和不同焙烧温度对硬脂酸正丁酯酯化率的影响。在反应温度85 ℃、催化剂用量0.2 g (为反应物总质量的2%)和回流反应150 min的条件下,酯化率可达84.5%。  相似文献   

15.
采用AIP-AN-TEOS-H2O体系,利用溶液-凝胶(Sol-Gel)法合成了均匀、稳定的Al2O3-SiO2纤维于法纺丝前驱溶胶,利用激光光散射粒度仪、红外光谱、TEM等测试手段分析了前驱溶胶的微观结构,反应过程中溶胶粒子尺寸变化以及从溶胶态到凝胶态转变过程中溶胶粒子形态的变化。  相似文献   

16.
采用水热法制备了纳米Fe_2O_3,并用超声分散法将其与纳米Al颗粒复合制备了超级铝热剂Al/Fe_2O_3,利用X-射线粉末衍射(XRD)、透射电子显微镜(TEM)、扫描电镜及能量散射光谱仪(SEM-EDS)对复合物的物相、组成、形貌和结构进行了分析表征,采用差示扫描量热法(DSC)和热红联用技术(TG-FTIR)研究了Al/Fe_2O_3对硝化棉(NC)热分解过程的影响。结果表明,Al/Fe_2O_3-NC和NC的热分解过程遵循Avrami-Erofeev方程f(α)=1.5(1-α)[-ln(1-α)]1/3;超级铝热剂Al/Fe_2O_3可降低硝化棉的表观活化能、临界点火温度和临界爆炸温度,在促进硝化棉O-NO_2键断裂和凝聚相二次自催化反应中起到至关重要的作用。  相似文献   

17.
铝热剂对双基推进剂激光点火特性的影响   总被引:1,自引:0,他引:1  
用纳米及微米铝粉、纳米氧化铅、纳米氧化铜和纳米三氧化二铋为原料,采用超声分散复合的方法,制备了铝热剂AI/PbO、Al/CuO和Al/Bi2O3.采用XRD、SEM-EDS和FTIR对原料和产物的物相、组成、形貌和结构进行表征;采用CO2激光点火实验方法,研究了含不同铝热剂双基(MIC-DB)推进剂在不同热流密度下的点...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号