共查询到20条相似文献,搜索用时 15 毫秒
1.
Rujin Tian 《Journal of power sources》2011,196(3):1258-1263
Chromium nitride/Cr coating has been deposited on surface of 316L stainless steel to improve conductivity and corrosion resistance by physical vapor deposition (PVD) technology. Electrochemical behaviors of the chromium nitride/Cr coated 316L stainless steel are investigated in 0.05 M H2SO4 + 2 ppm F− simulating proton exchange membrane fuel cell (PEMFC) environments, and interfacial contact resistance (ICR) are measured before and after potentiostatic polarization at anodic and cathodic operation potentials for PEMFC. The chromium nitride/Cr coated 316L stainless steel exhibits improved corrosion resistance and better stability of passive film either in the simulated anodic or cathodic environment. In comparison to 316L stainless steel with air-formed oxide film, the ICR between the chromium nitride/Cr coated 316L stainless steel and carbon paper is about 30 mΩ cm2 that is about one-third of bare 316L stainless steel at the compaction force of 150 N cm−2. Even stable passive films are formed in the simulated PEMFC environments after potentiostatic polarization, the ICR of the chromium nitride/Cr coated 316L stainless steel increases slightly in the range of measured compaction force. The excellent performance of the chromium nitride/Cr coated 316L stainless steel is attributed to inherent characters. The chromium nitride/Cr coated 316L stainless steel is a promising material using as bipolar plate for PEMFC. 相似文献
2.
Lixia Wang Juncai SunPengbin Li Jing SunYing Lv Bo JingSong Li Shijun JiZhongsheng Wen 《International Journal of Hydrogen Energy》2012
A molybdenum nitride diffusion coating has been prepared on the surface of AISI 304 stainless steel (304 SS) by plasma surface diffusion alloying method as bipolar plate for proton exchange membrane fuel cell (PEMFC). X-ray diffraction data shows that the molybdenum nitride is face-centered-cubic Mo2N phase. The results of scanning electron microscopy in combination with energy-dispersive X-ray analysis spectrometer indicate that the as-prepared molybdenum nitride diffusion coating consists of a ∼3.5 μm surface layer (molybdenum nitride) and a ∼0.5 μm subsurface layer (Mo and N solid solution). In addition, the average contact angle with water for modified 304 SS is 91°, demonstrating the better hydrophobic property of the surface modified 304 SS as compared to the untreated ones with average contact angle of 68°. Potentiodynamic and potentiostatic testing in simulated PEFMC operating conditions (0.05 M H2SO4 + 2 ppm F− solution at 70 °C purged with either hydrogen or air) as well as interfacial contact resistance (ICR) measurement imply that the molybdenum nitride modified 304 SS exhibits improved corrosion resistance and promising ICR. 相似文献
3.
The lower temperature chromizing treatment is developed to modify 316L stainless steel (SS 316L) for the application of bipolar plate in proton exchange membrane fuel cell (PEMFC). The treatment is performed to produce a coating, containing mainly Cr-carbide and Cr-nitride, on the substrate to improve the anticorrosion properties and electrical conductivity between the bipolar plate and carbon paper. Shot peening is used as the pretreatment to produce an activated surface on stainless steel to reduce chromizing temperature. Anticorrosion properties and interfacial contact resistance (ICR) are investigated in this study. Results show that the chromized SS 316L exhibits better corrosion resistance and lower ICR value than those of bare SS 316L. The chromized SS 316L shows the passive current density about 3E−7 A cm−2 that is about four orders of magnitude lower than that of bare SS 316L. ICR value of the chromized SS 316L is 13 mΩ cm2 that is about one-third of bare SS 316L at 200 N cm−2 compaction forces. Therefore, this study clearly states the performance advantages of using chromized SS 316L by lower temperature chromizing treatment as bipolar plate for PEMFC. 相似文献
4.
Changhee ChoeHyoseok Choi Wonhyuk HongJung-Joong Lee 《International Journal of Hydrogen Energy》2012,37(1):405-411
Tantalum nitride (TaN) thin films are deposited on AISI 316L stainless steel by inductively coupled, plasma-assisted, reactive magnetron sputtering at various N2 flow rates. TaN film behavior is investigated in simulated polymer electrolyte membrane fuel cell (PEMFC) conditions by using electrochemical measurement techniques for application as bipolar plates. The results of a potentio-dynamic polarization test under PEMFC cathodic and anodic conditions indicate that the corrosion current density of the TaNx films is of the order of 10−7 A cm−2 (at 0.6 V) and 10−8 A cm−2 (at −0.1 V), respectively; these results are considerably better than the individual results for metallic Ta films and AISI 316L stainless steel. The TaNx films exhibit superior stability in a potentio-static polarization test performed under PEMFC cathodic and anodic conditions. The interfacial contact resistance of the films is measured in the range of 50-150 N cm−2, and the lowest value is 11 mΩ cm2 at a compaction pressure of 150 N cm−2. 相似文献
5.
《International Journal of Hydrogen Energy》2014,39(36):21127-21153
Stainless steel bipolar plates (BPPs) are regarded as promising alternatives to traditional graphite BPPs in proton exchange membrane fuel cells (PEMFCs). This technology has experienced more than 20 years development and has been partially applied in industrial production. This review surveys recent progress of entire development process for stainless steel BPPs in terms of flow field design, microforming process, joining process and coating process. Besides, assembly process considering dimensional error, shape error and assembly error are comprehensively summarized as well. Finally, technical challenges and future trends are presented for the application of stainless steel BPPs for PEMFCs. 相似文献
6.
Kwang Min KimJong Hee Kim Yun Yong LeeKyoo Young Kim 《International Journal of Hydrogen Energy》2011,36(20):13014-13021
The surface of 446M ferritic stainless steel (FSS) is modified by immersing in NaOH solution to understand its effect on the interfacial contact resistance (ICR) and corrosion. Immersion in NaOH solution under optimum condition can lead to decrease the ICR value of 446M FSS with no decrease in the corrosion resistance. Immersion of 446M FSS in NaOH solution increases the ratio of Cr oxy-hydroxide/oxide, which contributes to decrease the ICR value. This means that the bound water present in the form of the OH− group in the passive film acts as a donor-type impurity and provides the active sites for electrical conduction in the oxide. This imparts positive effect on the electrical conduction and leads to decrease in the ICR value even after the long-term immersion in the simulated PEMFC environment. 相似文献
7.
Haijun Yu Lijun Yang Lei Zhu Xuyu Jian Zhong Wang Lijun Jiang 《Journal of power sources》2009,191(2):495-500
In order to reduce the cost, volume and weight of the bipolar plates used in the proton exchange membrane fuel cells (PEMFC), more attention is being paid to metallic materials, among which 316L stainless steel (SS316L) is quite attractive. In this study, metallic Ta is deposited on SS316L using physical vapor deposition (PVD) to enhance the corrosion resistance of the bipolar plates. Simulative working environment of PEMFC is applied for testing the corrosion property of uncoated and Ta-coated SS316L. X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods (potentiodynamic and potentiostatic polarization) are also used for analyzing characteristics of uncoated and Ta-coated SS316L. Results show that, Ta-coated SS316L has significantly better anticorrosion property than that of uncoated SS316L, with corrosion current densities of uncoated SS316L being 44.61 μA cm−2 versus 9.25 μA cm−2 for Ta-coated SS316L, a decrease of about 5 times. Moreover, corrosion current densities of Ta-coated SS316L in both simulative anode (purged with H2) and cathode (purged with air) conditions are smaller than those of uncoated SS316L. 相似文献
8.
Electrochemical behavior of a high Cr and Ni austenitic stainless steel (HCN) is investigated and 316L SS in a simulated proton exchange membrane fuel cell environments is also investigated, and interfacial contact resistance (ICR) is measured before and after potentiostatic polarization. Both stainless steels underwent passivation in both anode and cathode environments for proton exchange membrane fuel cell. Passive current density of HCN is lower than that of 316L SS. An increase in ICR between carbon paper and HCN results from passive film formed during the potentiostatic polarization. 相似文献
9.
Wonhyuk HongDong-Hoon Han Hyoseok ChoiMin-Woo Kim Jung-Joong Lee 《International Journal of Hydrogen Energy》2011,36(3):2207-2212
Austenitic stainless steel (AISI 316L) is nitrided by inductively coupled plasma using a gas mixture of N2 and H2 at temperatures between 530 K and 650 K, and the corrosion resistance as well as the interfacial contact resistance (ICR) are measured in a simulated proton exchange membrane fuel cell (PEMFC) environment.After plasma nitriding, a nitrogen-expanded austenite layer, the so-called S-phase is formed in all nitrided samples. The ICR value of the nitrided samples decreases to approximately 10 mΩcm2 after plasma nitriding. The sample nitrided at 590 K shows the best corrosion property, while the corrosion resistance of the sample nitrided at higher temperatures decreases because of the formation of Cr-depleted regions in the nitrided sample. By using high-density plasma, the process temperature can be reduced to such a low temperature that Cr depletion is not significant, but a dense S-phase is formed. 相似文献
10.
《International Journal of Hydrogen Energy》2019,44(10):4940-4950
Superior corrosion resistance and high electrical conductivity are crucial to the metallic bipolar plates towards a wider application in proton exchange membrane fuel cells. In this work, molybdenum carbide coatings are deposited in different thicknesses onto the surface of 316 L stainless steel by magnetron sputtering, and their feasibility as bipolar plates is investigated. The microstructure characterization confirms a homogenous, compact and defectless surface for the coatings. The anti-corrosion performance improves with the increase of the coating thickness by careful analysis of the potentiodynamic and potentiostatic data. With the adoption of a thin chromium transition layer and coating of a ∼1052 nm thick molybdenum carbide, an excellent corrosion current density of 0.23 μA cm−2 is achieved, being approximately 3 orders of magnitude lower than that of the bare stainless steel. The coated samples also show a low interfacial contact resistance down to 6.5 mΩ cm2 in contrast to 60 mΩ cm2 for the uncoated ones. Additionally, the hydrophobic property of the coatings’ surface is beneficial for the removal of liquid water during fuel cell operation. The results suggest that the molybdenum carbide coated stainless steel is a promising candidate for the bipolar plates. 相似文献
11.
Junji Xuan Likun Xu Shuangfeng Bai Ting Zhao Yonglei Xin Guodong Zhang Lili Xue Li Li 《International Journal of Hydrogen Energy》2021,46(44):22920-22931
The effects of temperature on corrosion behavior, wettability, and surface conductivity of 304 stainless steel (SS304) in simulated cathode environment of proton exchange membrane fuel cells (PEMFC) are investigated systematically using electrochemical tests and surface analyses. The results indicate that although the corrosion resistance of SS304 is decreased with the rising of solution temperature, the current density of SS304 at the working potential in the simulated PEMFC cathode environment can still meet the 2025 U.S. Department of Energy (DOE) technical target (icorr < 1 μA cm?2). Meanwhile, the surface wettability and ICR of SS304 samples after potentiostatic polarization show a continuous increase with the rise of the simulated solution temperature. The surface conductivity of SS304 both before and after polarization cannot reach the 2025 DOE technical target (<0.01 Ω cm2) and needs to be improved by surface modification. 相似文献
12.
《International Journal of Hydrogen Energy》2014,39(36):21470-21479
Proton exchange membrane fuel cell (PEMFC) has attracted considerable interest because of its superb performance, and many researches are focused on the development of high-performance, long-life bipolar plates. Stainless steel bipolar plates offer many advantages over the conventional graphite bipolar plates, such as low material and fabrication cost, excellent mechanical behaviour and ease of mass production. However, the insufficient corrosion resistance and relatively high interfacial contact resistance (ICR) become the major obstacles to the widespread use of stainless steel bipolar plates. In this work, active screen plasma nitriding (ASPN), a novel plasma nitriding technique, was used to modify the surface of 316 austenitic stainless steel. A variety of analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), glow discharge optical emission spectrometer (GDOES), were employed to characterize the nitrided samples. The results reveal that a nitrogen supersaturated S-phase layer has been successfully produced on the surface of all nitrided 316 stainless steel samples. The interfacial contact resistance (ICR) value can be decreased dramatically after ASPN treatment and the corrosion resistance can also been improved. In addition, better corrosion resistance can be achieved by active screen plasma nitriding with a stainless steel screen than with a carbon steel screen. This technique could be used to improve the performance and lifespan of bipolar plates for fuel cells. 相似文献
13.
(Titanium, chromium) nitride [(Ti,Cr)N] coatings are synthesized on a 316L stainless-steel substrate by inductively-coupled, plasma-assisted, reactive direct current magnetron sputtering. The chemical and electrical properties of the coating are investigated from the viewpoint of it application to bipolar plates. Nanocrystallized Cr–Ti films are formed in the absence of nitrogen gas, while a hexagonal β-(Ti,Cr)2N phase is observed at N2 = 1.2 sccm. Well-crystallized (Ti,Cr)N films are obtained at N2 > 2.0 sccm. The corrosion resistance of the coating is examined by potentiodynamic and potentiostatic tests in 0.05 M H2SO4 + 0.2 ppm HF solution at 80 °C, which simulates the operation conditions of a polymer electrolyte membrane fuel cell. The Davies method is used to measure the interfacial contact resistance between the sample and carbon paper. The (Ti,Cr)N coating exhibits the highest corrosion potential and lowest current density. In a cathode environment, the corrosion potential and current density are 0.33 V (vs. SCE) and <5 × 10−7 A cm−2 (at 0.6 V), respectively. In an anode environment the corresponding values are 0.16 V and <−5 × 10−8 A cm−2 at −0.1 V. The (Ti,Cr)N coatings exhibit excellent stability during potentiostatic polarization tests in both anode and cathode environments. The interfacial contact resistance decreases with deposition of the (Ti,Cr)N film, and a minimum value of 4.5 mΩ cm2 is obtained at a compaction force of 150 N cm−2, which indicates that the formation of oxide films can be successfully prevented by the (Ti,Cr)N film. Analysis with Auger electron spectroscopy reveals that the oxygen content at the surface decreases with increase in the nitrogen content. 相似文献
14.
The corrosion characteristics of SS316L in simulated proton exchange membrane fuel cell (PEMFC) environments with a wide range of H2SO4 concentrations have been systematically studied. Electrochemical methods, both potentiodynamic and potentiostatic, are employed to determine the corrosion parameters and the results show that corrosion resistance decreases with increasing H2SO4 concentrations. Scanning electron microscope (SEM) is used to examine the surface morphology of the specimens after potentiostatic polarized in simulated PEMFC cathode environments and the results indicate that local corrosion occurs under all the conditions studied and local corrosion is more severe with higher H2SO4 concentrations. Auger electron spectroscopy (AES) analysis is used to identify the composition and the depth profile of the passive film formed on the SS316L surface and the results show that the thickness of passive film decreases with increasing H2SO4 concentrations. Interfacial contact resistances (ICR) between SS316L polarized and carbon paper are measured and the results show that ICR decreases with increasing H2SO4 concentrations. The corrosion mechanisms of SS316L in PEMFC cathode environments are analysed and discussions on choosing simulated PEMFC cathode corrosion environments for accelerated tests are also provided. 相似文献
15.
Niobium and titanium are added to 316 stainless steel, and then heat treatment and surface treatment are performed on the 316 stainless steel and the Nb- and Ti-added alloys. All samples exhibit enhanced electrical conductivity after surface treatment but have low electrical conductivity before surface treatment due to the existence of non-conductive passive films on the alloy surfaces. In particular, the Nb- and Ti-added alloys experience a remarkable enhancement of electrical conductivity and cell performance compared with the original 316 stainless steel. Surface characterization reveals the presence of small carbide particles on the alloy surface after treatment, whereas the untreated alloys have a flat surface structure. Cr23C6 forms on the 316 stainless steel, and NbC and TiC forms on the Nb- and Ti-added alloys, respectively. The enhanced electrical conductivity after surface treatment is attributed to the formation of these carbide particles, which possibly act as electro-conductive channels through the passive film. Furthermore, NbC and TiC are considered to be more effective carbides than Cr23C6 as electro-conductive channels for stainless steel. 相似文献
16.
Chih-Yeh Chung Shi-Kun ChenPo-Jen Chiu Ming-Hsin ChangTien-Tsai Hung Tse-Hao Ko 《Journal of power sources》2008
Carbon film-coated stainless steel (CFCSS) has been evaluated as a low-cost and small-volume substitute for graphite bipolar plate in polymer electrolyte membrane fuel cell (PEMFC). In the present work, AISI 304 stainless steel (304SS) plate was coated with nickel layer to catalyze carbon deposits at 680°C under C2H2/H2 mixed gas atmosphere. Surface morphologies of carbon deposits exhibited strong dependence on the concentration of carbonaceous gas and a continuous carbon film with compact structure was obtained at 680 °C under C2H2/H2 mixed gas ratio of 0.45. Systematic analyses indicated that the carbon film was composed of a highly ordered graphite layer and a surface layer with disarranged graphite structure. Both corrosion endurance tests and PEMFC operations showed that the carbon film revealed excellent chemical stability similar to high-purity graphite plate, which successfully protected 304SS substrate against the corrosive environment in PEMFC. We therefore predict CFCSS plates may practically replace commercial graphite plates in the application of PEMFC. 相似文献
17.
Composite film of carbon nanotube (CNT) and polytetrafluoroethylene (PTFE) was successfully formed by using their dispersion fluids. This CNT/PTFE composite film was electrically conductive in the range of 10 S cm−1. The proton exchange membrane fuel cell (PEMFC) was assembled with the stainless steel bipolar plate coated with the CNT/PTFE composite film. This coating decreased the contact resistance between the surface of the bipolar plate and the membrane electrode assemble (MEA). Therefore, the output power of the fuel cell increased by 1.6 times. 相似文献
18.
In this study, 304 stainless steel (SS) bipolar plates are fabricated by flexible forming process and an amorphous carbon (a-C) film is coated by closed field unbalanced magnetron sputter ion plating (CFUBMSIP). The interfacial contact resistance (ICR), in-plane conductivity and surface energy of the a-C coated 304SS samples are investigated. The initial performance of the single cell with a-C coated bipolar plates is 923.9 mW cm−2 at a cell voltage of 0.6 V, and the peak power density is 1150.6 mW cm−2 at a current density of 2573.2 mA cm−2. Performance comparison experiments between a-C coated and bare 304SS bipolar plates show that the single cell performance is greatly improved by the a-C coating. Lifetime test of the single cell over 200 h and contamination analysis of the tested membrane electrode assemble (MEA) indicate that the a-C coating has excellent chemical stability. A 100 W-class proton exchange membrane fuel cell (PEMFC) short stack with a-C coated bipolar plates is assembled and shows exciting initial performance. The stack also exhibits uniform voltage distribution, good short-term lifetime performance, and high volumetric power density and specific power. Therefore, a-C coated 304SS bipolar plates may be practically applied for commercialization of PEMFC technology. 相似文献
19.
Plasma nitriding was applied to improve the surface performance of titanium bipolar plate. XRD and SEM results showed a titanium nitride layer was formed after nitridation. In comparison with pure titanium, the interfacial contact resistance of plasma nitrided titanium was reduced to some extent by the nitridation treatment. However, high corrosion current was observed under electrochemical tests in 0.5 M H2SO4 + 5 ppm HF. Both the electrical conductivity and corrosion resistance of the surface of plasma nitriding titanium did not reach the level of graphite. Some more improvements are expected in the plasma nitriding process or another surface modification on pure titanium. 相似文献
20.
Stainless steel bipolar plates for the polymer electrolyte membrane (PEM) fuel cell offer many advantages over conventional machined graphite. Austenitic stainless steel 316L is a traditional candidate for metal bipolar plates. However, the interfacial ohmic loss across the metallic bipolar plate and membrane electrode assembly due to corrosion increases the overall power output of PEMFC. Plasma nitriding was applied to improve the surface performance of 316L bipolar plates. A dense γN phase layer was formed on the surface. Polarization curves in the solution simulating PEMFC environment and interfacial contact resistance were measured. The results show that the corrosion resistance is improved and the interfacial contact resistance (ICR) is decreased after plasma nitriding. In comparison with the untreated 316L, the ICR between the carbon paper and passive film for the plasma-nitrided 316L decreases at the same condition and lowers with increasing pH value. 相似文献