首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
As hydrogen fuel cell vehicles move from manifestation to commercialization, the users expect safe, convenient and customer-friendly fuelling. Hydrogen quality affects fuel cell stack performance and lifetime, as well as other factors such as valve operation. In this paper, previous researcher's development on hydrogen as a possible major fuel of the future has been studied thoroughly. Hydrogen is one of the energy carriers which can replace fossil fuel and can be used as fuel in an internal combustion engines and as a fuel cell in vehicles. To use hydrogen as a fuel of internal combustion engine, engine design should be considered for avoiding abnormal combustion. As a result it can improve engine efficiency, power output and reduce NOx emissions. The emission of fuel cell is low as compared to conventional vehicles but as penalty, fuel cell vehicles need additional space and weight to install the battery and storage tank, thus increases it production cost. The production of hydrogen can be ‘carbon-free’ only if it is generated by employing genuinely carbon-free renewable energy sources. The acceptability of hydrogen technology depends on the knowledge and awareness of the hydrogen benefits towards environment and human life. Recent study shows that people still do not have the sufficient information of hydrogen.  相似文献   

2.
Hydrogen from renewable energy sources is a clean and sustainable option as a fuel and is seen as a potential alternative to gasoline in the future. However, in the near future the use of hydrogen in internal combustion engines is possible at low fraction in mixture with compressed natural gas (HCNG fuel).  相似文献   

3.
The n-butanol fuel, as a renewable and clean biofuel, could ease the energy crisis and decrease the harmful emissions. As another clean and renewable energy, hydrogen properly offset the high HC emissions and the insufficient of dynamic property of pure n-butanol fuel in SI engines, because of the high diffusion coefficient, high adiabatic flame velocity and low heat value. Hydrogen direct injection not only avoids backfire and lower intake efficiency but also promotes to form in-cylinder stratified mixture, which is helpful to enhance combustion and reduce emissions. This experimental study focused on the combustion and emissions characteristics of a hydrogen direct injection stratified n-butanol engine. Three different hydrogen addition fractions (0%, 2.5%, 5%) were used under five different spark timing (10° ,15° ,20° ,25° ,30° CA BTDC). Engine speed and excess air ratio stabled at 1500 rpm and 1.2 respectively. The direct injection timing of the hydrogen was optimized to form a beter stratified mixture. The obtained results demonstrated that brake power and brake thermal efficiency are increased by addition hydrogen directly injected. The BSFC is decreased with the addition of hydrogen. The peak cylinder pressure and the instantaneous heat release rate raises with the increase of the hydrogen addition fraction. In addition, the HC and CO emissions drop while the NOx emissions sharply rise with the addition of hydrogen. As a whole, with hydrogen direct injection, the power and fuel economy performance of n-butanol engine are markedly improved, harmful emissions are partly decreased.  相似文献   

4.
Hydrogen is seen as one of the important energy vectors of the next century. Hydrogen as an energy carrier, provides the potential for a sustainable development particularly in the transportation sector. A hydrogen fueled engine has the potential for substantially cleaner emissions than other internal combustion engines. Other benefits arise from the wide flammability limits and the high flame propagation speed, both allowing better efficiency. The Laboratory of Transporttechnology (University of Ghent) converted a GM/Crusader V8 SI engine for hydrogen use, to be built in a city bus. A sequential timed multipoint injection system was implemented. Attention is directed towards special characteristics related to the use of hydrogen as a fuel in IC engines: ignition properties (smaller spark plug gap), injection pressure (dependent on the means of storage: compressed gas or liquid), quality of the lubricating oil (due to higher blow-by volumes, a substantial amount of hydrogen is present in the crankcase), oxygen sensors (very lean operating conditions). The advantages and disadvantages of a power regulation by changing the air to fuel ratio (as for diesel engines), as compared to throttle regulation (SI engines) are judged.  相似文献   

5.
An experimental investigation on DI diesel engine with hydrogen fuel   总被引:1,自引:0,他引:1  
The internal combustion engines have already become an indispensable and integral part of our present day life style, particularly in the transportation and agricultural sectors [Nagalingam B. Properties of hydrogen. In: Proceedings of the summer school of hydrogen energy, IIT Madras, 1984]. Unfortunately the survival of these engines has, of late, been threatened due to the problems of fuel crisis and environmental pollution. Therefore, to sustain the present growth rate of civilization, a nondepletable, clean fuel must be expeditiously sought. Hydrogen exactly caters to the specified needs. Hydrogen, even though “renewable” and “clean burning”, does give rise to some undesirable combustion problems in an engine operation, such as backfire, pre-ignition, knocking and rapid rate of pressure rise [Srinivasa Rao P. Utilization of hydrogen in a dual fueled engine. In: Proceedings of the summer school of hydrogen energy, IIT Madras, 1984; Siebers DL. Hydrogen combustion under diesel engine conditions. Hydrogen Energy 1998;23:363–71]. The present investigation compares the performance and emission characteristics of a DI diesel engine with gaseous hydrogen as a fuel inducted by means of carburation technique and timed port injection technique (TPI) along with diesel as a source of ignition [Swain N, Design and testing of dedicated hydrogen-fueled engine. SAE 961077, 1996]. In the present study the specific energy consumption, NOx emission and the exhaust gas temperature increased by 6%, 8% and 14%, respectively, and brake thermal efficiency and smoke level reduced by 5% and 8%, respectively, using carburation technique compared to baseline diesel. But in the TPI technique, the specific energy consumption, exhaust gas temperature and smoke level reduced by 15%, 45% and 18%, respectively. The brake thermal efficiency and NOx increased by 17% and 34%, respectively, compared to baseline diesel. The emissions such as HC, CO, and CO2 is very low in both carburation and TPI techniques compared baseline diesel.  相似文献   

6.
In order to alleviate the contradictions of increasingly prominent environmental pollution, greenhouse gas emissions and oil resource security issues, the search for renewable and clean alternative energy sources is getting more and more attention. Hydrogen energy is known as a future energy source because of its safety, reliability, wide range of resources and non-polluting products. Hydrogen internal combustion engine combines the technical advantages of traditional internal combustion engines and has comprehensive comparative advantages in terms of manufacturing cost, fuel adaptability and reliability. It is one of the practical ways to realize hydrogen energy utilization. In this paper, the combustion characteristics and NOx emission of a turbocharged hydrogen engine were investigated using the test data. The results showed the combustion duration (the crank angle of 10%–90% fuel burned) at 1500 rpm and 2000 rpm was equal and the combustion duration is much bigger than the other loads when the BMEP is 0.27 MPa. The reason is the effect of the turbocharger on the gas exchange process, which will influence the combustion process. The cylinder pressure and pressure rise rate were also investigated and the peak pressure rise rate was lower than 0.25 MPa/°CA at all working conditions. Moreover, the NOx emission changed from 300 ppm to 1200 ppm with engine speed increasing and the maximum value can reach to 7000 ppm when the equivalence ratio is 0.88 at 2500 rpm, maximum brake torque. The NOx emission shows different changing tendencies with different working conditions. Finally, these conclusions can be used to develop controlling strategies to solve the contradictions among power, brake thermal efficiency and NOx emission for the turbocharged hydrogen internal combustion engines.  相似文献   

7.
Environmental concerns and depletion in petroleum resources have forced researchers to concentrate on finding renewable alternatives to conventional petroleum fuels. Hydrogen is thought to be a major energy resource of the future due to its clean burning nature and eventual availability from renewable sources. Hydrogen is widely regarded as a promising transportation fuel because it is clean and renewable.The authors manufactured a high accuracy heavy-duty variable compression ratio single cylinder engine to investigate its performance and emissions characteristics. The test engine was run at 1400 rpm with a compression ratio of 8. Spark timing was set to MBT (minimum spark advance for best torque). This paper investigates the effects of hydrogen enriched LPG fueled engine on exhaust emission, thermal efficiency and performance.  相似文献   

8.
Vehicular Pollution and environmental degradation are on the rise with increasing vehicles and to stop this strict regulation have been put on vehicular emissions. Also, the depleting fossil fuels are of great concern for energy security. This has motivated the researchers to invest considerable resources in finding cleaner burning, sustainable and renewable fuels. However renewable fuels independently are not sufficient to deal with the problem at hand due to supply constraints. Hence, advanced combustion technologies such as homogeneous charge compression ignition (HCCI), low-temperature combustion (LTC), and dual fuel engines are extensively researched upon. In this context, this work investigates dual fuel mode combustion using a constant speed diesel engine, operated using hydrogen and diesel. The engine is operated at 25, 50 and 75% loads and substitution of diesel energy with hydrogen energy is done as 0, 5, 10 and 20%. The effect of hydrogen energy share (HES) enhancement on engine performance and emissions is investigated. In the tested range, slightly detrimental effect of HES on brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) is observed. Comparision of NO and NO2 emissions is done to understand the non-thermal influence of H2 on the NOx emissions. Hence, HES is found beneficial in reducing harmful emissions at low and mid loads.  相似文献   

9.
The sustainable reduction of greenhouse gas emissions from road transport requires solutions to achieve net-zero carbon dioxide emissions. Therefore, in addition to vehicles with electrified powertrains, such as those implemented in battery electric of fuel cell vehicles, internal combustion engines fueled with e-fuels or biofuels are also under discussion. An e-fuel that has come into focus recently, is hydrogen due to its potential to achieve zero tank-to-wheel and well-to-wheel carbon dioxide emissions when the electrolysis is powered by electricity from renewable sources. Due to the high laminar burning velocity, hydrogen has the potential for engine operation with high cylinder charge dilution by e.g. external exhaust gas recirculation or enleanment, resulting in increased efficiency. On the other hand, the high burning velocity and high adiabatic flame temperatures pose a challenge for engine cooling due to increased heat losses compared to conventional fuels. To further evaluate the use of hydrogen for small passenger car engines, a series production 1 L 3 cylinder gasoline engine provided by Ford Werke GmbH was modified for hydrogen direct injection. The engine was equipped with a high pressure external exhaust gas recirculation system to investigate charge dilution at stoichiometric operation. Due to limitations of the turbocharging system, very lean operation, which can achieve nitrogen oxides raw emissions below 10 ppm, was limited to part load operation below BMEP = 8 bar. Thus, a reduction of the nitrogen oxides emission level at high loads compared to stoichiometric operation was not possible. At stoichiometric operation with external exhaust gas recirculation engine efficiency can be increased significantly. The comparison of stoichiometric hydrogen and gasoline operation shows a reduced indicated efficiency with hydrogen with significant faster combustion of hydrogen at comparable centers of combustion. However, higher boost pressures would allow to achieve even higher indicated efficiencies by charge dilution compared to gasoline engine operation.  相似文献   

10.
In this paper, the significance of CO2-free hydrogen is discussed using a long-term global energy system. The energy demand–supply system including CO2-free hydrogen was assumed, though there are still large uncertainties as to whether a global CO2-free hydrogen energy system will be deployed. System analysis was conducted using the global and long-term intertemporal optimization energy model GRAPE under severe CO2 emission constraints. Applied global CO2 constraints for 2050 were a 50% reduction from 1990 levels. CO2 constraints accounting for Intended Nationally Determined Contributions (INDCs) in each region were also considered. A variety of energy resources and technologies were considered in this model. Hydrogen can be produced from low-grade coal or natural gas with CO2 capture and electricity from renewable energy. The hydrogen CIF (cost, insurance, and freight) price for Japan was about 3.2 cents/MJ in 2030. Hydrogen demand technologies considered in this paper are hydrogen-fired power plants, direct combustion, combined heat and power (fuel cells, gas engines, and gas turbines), fuel cell vehicles, and hydrogen internal combustion engine vehicles. The majority of CO2-free hydrogen was deployed in the transportation sector. CO2-free hydrogen was utilized in the power sector, where deployment of other zero emission technology has some constraints. From an economic viewpoint, CO2-free hydrogen can reduce the global energy system cost. From the viewpoint of a localized region, such as Japan, deployment of CO2-free hydrogen can improve energy security and environmental indicators.  相似文献   

11.
A life cycle assessment of hydrogen and gasoline vehicles, including fuel production and utilization in vehicles powered by fuel cells and internal combustion engines, is conducted to evaluate and compare their efficiencies and environmental impacts. Fossil fuel and renewable technologies are investigated, and the assessment is divided into various stages.  相似文献   

12.
Hydrogen, used as fuel, has a number of attractive features that make it a leading candidate in the search for an alternative to the dwindling and progressively less reliable supply of fluid hydrocarbon fuels. Hydrogen produced by electrolysis using hydro- or nuclear-generated electricity will be available in Canada at prices competitive with other portable forms of energy before the end of the century. This paper examines the use of carbon-free electrolytic hydrogen as a motor vehicle fuel and as a fuel for fuel cells. A review of onboard hydrogen storage systems indicates that the propulsion power unit of hydrogen-fueled vehicles must be considerably more efficient than present gasoline-fueled internal combustion engines in order to compensate for the larger size and greater weight of hydrogen storage systems. Hydrogen-fueled internal combustion engines are more efficient than similar gasoline-fueled engines, but the improvement is not sufficient to offset the storage system limitation. Fuel cells operate with much higher efficiency than internal combustion engines, especially at partial loads. A comparison between H3PO4 and KOH fuel cells show that where carbon-free hydrogen is available from the onboard storage system, the KOH fuel cell offers the higher level of performance.  相似文献   

13.
Decarbonizing the power generation and transportation sectors, responsible for ∼65% of Green House Gas (GHG) emissions globally, constitutes a crucial step to addressing climate change. Accordingly, the energy paradigm is shifting towards carbon-free and low-emission alternative fuels. Even though the current decarbonization using hydrogen is not large since 96% of global hydrogen production is relying on conventional fossil fuels that produce GHGs in the process, hydrogen fuel has been considered a promising fuel for fuel cell and combustion engines. Various renewable approaches utilizing biomass and water have been investigated to produce green hydrogen. With this, recent developments showed viability to achieve deep decarbonization in the power generation and transportation sectors. Hydrogen-powered vehicles are commercially available in many countries, and over 300,000 fuel cell appliances were sold to produce hot water and electricity. This review aims to provide an overview of the potential role of hydrogen in power generation and transportation systems, recent achievements in research development, and technical challenges to successfully applying hydrogen as a primary fuel. Especially this review will focus on the hydrogen application in power generation and transportation sectors using fuel cells, gas turbines, and internal combustion engines (ICEs).  相似文献   

14.
With an alarming enlargement in vehicular density, there is a threat to the environment due to toxic emissions and depleting fossil fuel reserves across the globe. This has led to the perpetual exploration of clean energy resources to establish sustainable transportation. Researchers are continuously looking for the fuels with clean emission without compromising much on vehicular performance characteristics which has already been set by efficient diesel engines. Hydrogen seems to be a promising alternative fuel for its clean combustion, recyclability and enhanced engine performance. However, problems like high NOx emissions is seen as an exclusive threat to hydrogen fuelled engines. Exhaust gas recirculation (EGR), on the other hand, is known to overcome the aforementioned problem. Therefore, this study is conducted to study the combined effect of hydrogen addition and EGR on the dual fuelled compression ignition engine on a single cylinder diesel engine modified to incorporate manifold hydrogen injection and controlled EGR. The experiments are conducted for 25%, 50%, 75% and 100% loads with the hydrogen energy share (HES) of 0%, 10% and 30%. The EGR rate is controlled between 0%, 5% and 10%. With no substantial decrement in engine's brake thermal efficiency, high gains in terms of emissions are observed due to synergy between hydrogen addition and EGR. The cumulative reduction of 38.4%, 27.4%, 33.4%, 32.3% and 20% with 30% HES and 10% EGR is observed for NOx, CO2, CO, THC and PM, respectively. Hence, the combination of hydrogen addition and EGR is observed to be advantageous for overall emission reduction.  相似文献   

15.
Internal combustion engines continue to dominate in many fields like transportation, agriculture and power generation. Among the various alternative fuels, hydrogen is a long-term renewable and less polluting fuel (Produced from renewable energy sources). In the present experimental investigation, the performance and emission characteristics were studied on a direct injection diesel engine in dual fuel mode with hydrogen inducted along with air adopting carburetion, timed port and manifold injection techniques. Results showed that in timed port injection, the specific energy consumption reduces by 15% and smoke level by 18%. The brake thermal efficiency and NOX increases by 17% and 34% respectively compared to baseline diesel. The variation in performance between port and manifold injection is not significant. The unburnt hydrocarbons and carbon monoxide emissions are lesser in port injection. The oxides of nitrogen are higher in hydrogen operation (both port and manifold injection) compared to diesel engine. In order to reduce the NOX emissions, a selective catalytic converter was used in hydrogen port fuel injection. The NOX emission reduced upto a maximum of 74% for ANR (ratio of flow rate of ammonia to the flow rate of NO) of 1.1 with a marginal reduction in efficiency. Selective catalytic reduction technique has been found to be effective in reducing the NOX emission from hydrogen fueled diesel engines.  相似文献   

16.
A more sustainable transportation calls for the use of alternative and renewable fuels, a further increase of the fuel energy conversion efficiency of internal combustion engines as well as the reduction of the thermal engine energy supply by recovering the braking energy. The paper presents two concepts being developed to improve the fuel conversion efficiency of internal combustion engines for transport applications. The first concept works on the combustion evolution to increase the amount of fuel energy transformed in piston work within the cylinder. The second concept works on the waste exhaust and coolant energies to be recovered through a power turbine downstream of the turbocharger turbine on the exhaust line and a steam turbine feed with the steam produced by a boiler/super heater made of the coolant passages and a heat exchanger on the exhaust line. The concepts work with hydrogen (and in this case a water injector is also necessary) as well as lower alkanes (methane, propane, butane). Preliminary simulations show improvement of top fuel conversion efficiencies to above 50% in the high power density operation. The waste heat recovery system also permits faster warm-up during cold start driving cycles.  相似文献   

17.
The environmental profile of hydrogen depends greatly on the nature of the feedstock and the production process. In this Well-to-Wheels (WTW) study, the environmental impacts of hydrogen production from lignocellulosic biomass via pyrolysis and subsequent steam reforming of bio-oil were evaluated and compared to the conventional production of hydrogen from natural gas steam reforming. Hydrogen was assumed to be used as transportation fuel in an internal combustion engine vehicle. Two scenarios for the provision of lignocellulosic biomass were considered: wood waste and dedicated willow cultivation. The WTW analysis showed that the production of bio-hydrogen consumes less fossil energy in the total lifecycle, mainly due to the renewable nature of the fuel that results in zero energy consumption in the combustion step. The total (fossil and renewable) energy demand is however higher compared to fossil hydrogen, due to the higher process energy demands and methanol used to stabilize bio-oil. Improvements could occur if these are sourced from renewable energy sources. The overall benefit of using a CO2 neutral renewable feedstock for the production of hydrogen is unquestionable. In terms of global warming, production of hydrogen from biomass through pyrolysis and reforming results in major GHG emissions, ranging from 40% to 50%, depending on the biomass source. The use of cultivated biomass aggravates the GHG emissions balance, mainly due to the N2O emissions at the cultivation step.  相似文献   

18.
氢燃料发动机的应用   总被引:2,自引:0,他引:2  
叙述了氢燃料发动机的特点,结构和工作原理,以及氢燃料的储存及燃烧特性。给出了一些氢燃料发动机的排放试验数据,并与使用其它燃料时进行了比较。主要从发动机的新能源和排放污染等方面,探讨推广氢燃料发动机的必要性及其应用可行性。  相似文献   

19.
Hydrogen and hydrogen-related technologies will have an important role in world energy projection in the near future. Interest in hydrogen technologies will also increase, especially due to the smart cities concept and the increase in renewable energy supply. In addition to being a clean energy source, the tendency of hydrogen to 100% renewable energy supply makes it ahead of other alternative fuels. The share of hydrogen and related energy technologies in reducing global warming and emissions will continue to increase day by day. For this reason, projections and investment opportunities should be determined for the coming years. In energy projections, the evaluation of hydrogen in terms of energy diversity until 2030 is carried out with EnergyPlan software. Accordingly, the reduction in the amount of emissions and costs were determined by mixing hydrogen into the natural gas pipelines by 5–10, and 20% by volume by producing electrolyzers with photovoltaic systems and according to the number of vehicles with fuel cells in the transportation sector until 2030.  相似文献   

20.
Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines and can be produced from renewable sources. Hydrogen’s wide flammability range allows higher engine efficiency than conventional fuels with both reduced toxic emissions and no CO2 gases. Most previous work on hydrogen engines has focused on spark-ignition operation. The current paper presents results from an optical study of controlled autoignition (or homogeneous charge compression ignition) of hydrogen in an engine of latest spark-ignition pentroof combustion chamber geometry with direct injection of hydrogen (100 bar). This was achieved by a combination of inlet air preheating in the range 200–400 °C and residual gas recirculated internally by negative valve overlap. Hydrogen fuelling was set to various values of equivalence ratio, typically in the range ? = 0.40–0.63. Crank-angle resolved flame chemiluminescence images were acquired for a series of consecutive cycles at 1000 RPM in order to calculate in-cylinder rates of flame expansion and motion. Planar Laser Induced Fluorescence (LIF) of OH was also applied to record more detailed features of the autoignition pattern. Single and double (i.e. ‘split’ per cycle) hydrogen injection strategies were employed in order to identify the effect of mixture preparation on autoignition’s timing and spatial development. An attempt was also made to review relevant in-cylinder phenomena from the limited literature on hydrogen-fuelled spark-ignition optical engines and make comparisons were appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号