首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biohydrogen production from cassava starch wastewater was evaluated in anaerobic sequencing batch biofilm reactor (AnSBBR) using different inoculum (mixed cultures from naturally fermented wastewater and anaerobic sludge thermally treated) and feeding strategies (batch and fed-batch). The highest hydrogen productivity (2.4 LH2 L−1 d−1) and yield (11.7 molH2 kg−1Carbohydrates) were verified in low and intermediate organic load rates (12 and 14 g L−1 d−1) and longer cycle time (4 h), respectively. The productivity was favored by fed-batch strategy, and yield by batch. The hydrogen production was verified in both inoculum sources. However, in the assays inoculated from naturally fermented wastewater, with higher organic load rate (18 g L−1 d−1) and intermediate cycle time (3 h) no hydrogen was observed, regardless the feeding strategy, indicating that the inhibitory effects of the indigenous microorganisms present in cassava starch wastewater were more expressive in these conditions. The operational conditions applied to hydrogen production in AnSBBR from cassava starch wastewater may influence the microflora development in the reactor. In this study three possible scenarios were verified: hydrogen-producing bacteria (HPB) growth; hydrogen-producing bacteria inhibition or coexistence between ones and lactic acid bacteria (LAB), which are autochthones of this wastewater.  相似文献   

2.
In recent years, a lot of scientific effort has been put into reusing the energy potential of sugarcane vinasse by dark fermentation. However, the findings so far indicate that new pathways need to be followed. In this context, this study assessed the effect of hydraulic retention time (HRT, from 24 to 1 h) on vinasse fermentation (10, 20, and 30 g COD L?1) in three mesophilic expanded granular sludge bed reactors (EGSB). The carbohydrate conversion remained above 60% at all organic loading rates applied. The maximum hydrogen production rate (8.77 L day?1 L?1) was obtained for 720 kg COD m?3 day?1 and associated to the lactate-acetate pathway. The highest productivities of propionic, acetic, and butyric acids were 3.11, 1.68, and 2.45 g L?1 h?1, respectively, at a HRT of 1 h. At this HRT, the degrees of acidification remained between 54% and 76% in all EGSB reactors. This research provides insights for carboxylate production from sugarcane vinasse and suggests applying the EGSB setup in the acidogenic stage of two-stage processes.  相似文献   

3.
The objective of this study was to evaluate the effects of hydraulic retention time (HRT) (8–1 h) on H2 production from sugarcane juice (5000 mg COD L−1) in mesophilic (30 °C, AFBR-30) and thermophilic (55 °C, AFBR-55) anaerobic fluidized bed reactors (AFBRs). At HRTs of 8 and 1 h in AFBR-30, the H2 production rates were 60 and 116 mL H2 h−1 L−1, the hydrogen yields were 0.60 and 0.10 mol H2 mol−1 hexose, and the highest bacterial diversities were 2.47 and 2.34, respectively. In AFBR-55, the decrease in the HRT from 8 to 1 h increased the hydrogen production rate to 501 mL H2 h−1 L−1 at the HRT of 1 h. The maximum hydrogen yield of 1.52 mol H2 mol−1 hexose was observed at the HRT of 2 h and was associated with the lowest bacterial diversity (0.92) and highest bacterial dominance (0.52).  相似文献   

4.
In recent times, biohydrogen production from microalgal feedstock has garnered considerable research interests to sustainably replace the fossil fuels. The present work adapted an integrated approach of utilizing deoiled Scenedesmus obliquus biomass as feedstock for biohydrogen production and valorization of dark fermentation (DF) effluent via biomethanation. The microalgae was cultivated under different CO2 concentration. CO2-air sparging of 5% v/v supported maximum microalgal growth and carbohydrate production with CO2 fixation ability of 727.7 mg L?1 d?1. Thereafter, lipid present in microalgae was extracted for biodiesel production and the deoiled microalgal biomass (DMB) was subjected to different pretreatment techniques to maximize the carbohydrate recovery and biohydrogen yield. Steam heating (121 °C) in coherence with H2SO4 (0.5 N) documented highest carbohydrate recovery of 87.5%. DF of acid-thermal pretreated DMB resulted in maximum H2 yield of 97.6 mL g?1 VS which was almost 10 times higher as compared to untreated DMB (9.8 mL g?1 VS). Subsequent utilization of DF effluent in biomethanation process resulted in cumulative methane production of 1060 mL L?1. The total substrate energy recovered from integrated biofuel production system was 30%. The present study envisages a microalgal biorefinery to produce biohydrogen via DF coupled with concomitant CO2 sequestration.  相似文献   

5.
This study aimed to evaluate the effect of the organic loading rate (OLR) (60, 90, and 120 g Chemical Oxygen Demand (COD). L?1. d?1) on hydrogen production from cheese whey and glycerol fermentation as cosubstrates (50% cheese whey and 50% glycerol on a COD basis) in a thermophilic fluidized bed reactor (55 °C). The increase in the OLR to 90 gCOD.L?1. d?1 favored the hydrogen production rate (HPR) (3.9 L H2. L?1. d?1) and hydrogen yield (HY) (1.7 mmol H2. gCOD?1app) concomitant with the production of butyric and acetic acids. Employing 16S rRNA gene sequencing, the highest hydrogen production was related to the detection of Thermoanaerobacterium (34.9%), Pseudomonas (14.5%), and Clostridium (4.7%). Conversely, at 120 gCOD.L?1. d?1, HPR and HY decreased to 2.5 L H2. L?1. d?1 and 0.8 mmol H2. gCOD?1app, respectively, due to lactic acid production that was related to the genera Thermoanaerobacterium (50.91%) and Tumebacillus (23.56%). Cofermentation favored hydrogen production at higher OLRs than cheese whey single fermentation.  相似文献   

6.
The biological production of hydrogen by microalgae is considered as an advantageous process. However, its yields are sometimes limited. To go beyond this limit, the improvement of the H2 generation rate by Spirulina was studied via an electrochemical photo-bioreactor (EPBR). This EPBR led to hydrogen evolution rates of up to 27.49 and 13.37 mol of H2.d−1.m−3 for the anode and cathode chambers, respectively, under 0.3 V voltage and ~2.5 mA current. These results represent about a 4-fold increase compared to the H2 production rate recorded without the application of a voltage. This increase in bio-hydrogen production is correlated with a drop in the concentration of NADPH. The Electrochemical Sequential Batch Reactor (ESRB) provided a more interesting total production rate which was 2.65 m3 m−3 d−1, compared to the batch mode, which gave 1.2 m3 m−3.d−1. The results show, for the first time, the boosting effect of the voltage on the metabolism of H2 production by the Spirulina strain.  相似文献   

7.
The present study is focused on bio hydrogen (H2) and bioplastic (i.e., poly-β-hydroxybutyrate; PHB) productions utilizing various wastes under dark fermentation, photo fermentation and subsequent dark-photo fermentation. Potential bio H2 and PHB producing microbes were enriched and isolated. The effects of substrate (rice husk hydrolysate, rice straw hydrolysate, dairy industry wastewater, and rice mill wastewater) concentration (10–100%) and pH (5.5–8.0) were examined in the batch mode under the dark and photo fermentation conditions. Using 100% rice straw hydrolysate at pH 7, the maximum bio H2 (1.53 ± 0.04 mol H2/mol glucose) and PHB (9.8 ± 0.14 g/L) were produced under dark fermentation condition by Bacillus cereus. In the subsequent dark-photo fermentation, the highest amounts of bio H2 and PHB were recorded utilizing 100% rice straw hydrolysate (1.82 ± 0.01 mol H2/mol glucose and 19.15 ± 0.25 g/L PHB) at a pH of 7.0 using Bacillus cereus (KR809374) and Rhodopseudomonas rutila. The subsequent dark-photo fermentative bio H2 and PHB productions obtained using renewable biomass (i.e., rice husk hydrolysate and rice straw hydrolysate) can be considered with respect to the sustainable management of global energy sources and environmental issues.  相似文献   

8.
The objective of the present study was to determine the energetic potential from cassava starch wastewater in a two-stage system (BioH2 + BioCH4) composed by anaerobic sequencing batch biofilm reactors (AnSBBR). Included in this general objective, the behavior of the methanogenic AnSBBR regarding organic matter removal and biomethane production will be investigated. The acidogenic AnSBBR was operated with organic loading rate (OLR) of 14 gCarb.L−1.d−1, influent concentration of 5 gCarb.L−1 and cycle time of 4 h. The methanogenic AnSBBR was submitted to OLR increase (3.7–12 gCOD.L−1.d−1), provided by arrangements between influent concentration (2.8; 4.0 and 6.0 gCOD.L−1) and cycle time (6; 8 and 12 h). For the evaluated condition, the acidogenic reactor presented productivity of 0.7 LH2.L−1.d−1 and yield of 1.1 molH2.kg−1Carb. The methanogenic reactor presented stable methane production (%CH4 > 78) during the 260-days operating period. The maximum methane productivity (2.71 LCH4.L−1.d−1) and yield (0.263 LCH4.g−1COD) were obtained at OLR of 12 gCOD.L−1.d−1 and cycle time of 6 h. The estimated energy production rate in the two-stage system (BioH2 + BioCH4) was 105.2 kJ.L−1.d−1.  相似文献   

9.
The continued search and urgent need for renewable fuel sources have necessitated the exploration of microalgae to identify relevant species for making biofuels. The aim of the study was bioprospecting and screening native microalgae strains from freshwater habitats of the Almaty region, Kazakhstan, to assess the potential for producing biofuel. The studied strains demonstrated simultaneous biomass productivity, lipid productivity, suitable fatty acid composition, and biodiesel properties. The sequence analysis of the ribosomal DNA internal transcribed spacer partial region and ribulose-bisphosphate carboxylase gene (rbcL) led to the identification of five microalgae: Monoraphidium griffithii ZBD-01, Nephrochlamys subsolitaria ZBD-02, Ankistrodesmus falcatus ZBD-03, Parachlorella kessleri ZBD-04, and Desmodesmus pannonicus ZBD-05. P. kessleri had the highest biomass production (1.42 ± 0.08 g L−1 day−1), lipid productivity (29 ± 1.2 g L−1day−1), and C16–C18 fatty acid contents (90%), followed by A. falcatus and M. griffithi. Gas chromatography/mass spectrometry analysis indicated that the dominant fatty acids in these strains were palmitic, stearic, and oleic acids. The calculated biodiesel properties of P. kessleri and A. falcatus based on fatty acid methyl esters (FAME) profiles showed relatively good fuel properties (cetane numbers - 48 and 50; iodine and saponification values - 83.4 and 103.6 g I₂/100 g oil, 260.8 and 199.5 mg KOH g−1), which correlate well with. Our results suggest that P. kessleri and A. falcatus are promising strains for biodiesel production due to their high lipid productivity, fatty acid profile with relatively high content of oleic acid, and suitable biodiesel properties. The isolated native species of microalgae from natural freshwater bodies of the Almaty region present opportunities for further exploitation for the sustainable production of biomass and biodiesel.  相似文献   

10.
The decomposition of formic acid is studied in a continuous sub- or supercritical water reactor at temperatures between 300 and 430 °C, a pressure of 25 MPa, residence times between 4 and 65 s, and a feedstock concentration of 3.6 wt%. In situ Raman spectroscopy is used to produce real-time data and accurately quantify decomposition product yields of H2, CO2, and CO. Collected spectra are used to determine global decomposition rates and kinetic rates for individual reaction pathways. First-order global Arrhenius parameters are determined as log A (s−1) = 1.6 ± 0.20 and EA = 9.5 ± 0.55 kcal/mol for subcritical decomposition, and log A (s−1) = 12.56 ± 1.96 and EA = 41.90 ± 6.08 kcal/mol for supercritical decomposition. Subcritical and supercritical Arrhenius parameters for individual pathways are proposed. The variance in rate parameters is likely due to changing thermophysical properties of water across the critical point. There is strong evidence for a surface catalyzed free-radical mechanism responsible for rapid decomposition above the critical point, facilitated by low density at supercritical conditions.  相似文献   

11.
Recently, there has been a propensity to postpone dealing with the world's climate concerns until later, resulting in a 1.5 °C rise in temperature over the last century. Therefore, interest in biologically derived, inexhaustible energy sources based on solar energy is growing. Cyanobacteria have the potential to produce clean, renewable fuels in the form of hydrogen (H2) gas, derived from solar energy and water. The current study reports the screening 11 cyanobacterial strains isolated from rice paddies and hotsprings for efficient H2 producers. According to our findings, H2 concentrations in the species ranged from 3.6 to 48.9 μmol mg−1 Chl a h−1. H2 production by isolated species was shown to have a 2% positive influence on oxygen (O2) and carbon dioxide (CO2) concentrations and a 2% negative effect on all nitrogen gas (N2) concentrations. It was discovered that at high CO2 concentrations, photosynthesis is enhanced but H2 production is suppressed. Anabaena variabilis BTA-1047 was found to be the most active H2-producing species, with an H2 production activity of 21.3 μmol mg−1 Chl a h−1. Moreover, a 1% O2: 2% CO2 gas mixture doubled the strain activity of H2 production. The findings of the study called into the question the notion that only an anaerobic environment is required for H2 production by N2-fixing cyanobacterial species and explored whether H2 productivity can be increased by stimulating the micro-anaerobic environment with a carbon source.  相似文献   

12.
13.
Hydrogen (H2) is a renewable, abundant, and nonpolluting source of energy. Photosynthetic organisms capture sunlight very efficiently and convert it into organic molecules. Cyanobacteria produce H2 by breaking down organic compounds and water. In this study, biological H2 was produced from various strains of cyanobacteria. Moreover, H2 accumulation by Synechocystis sp. PCC 6803 was as high as 0.037 μmol/mg Chl/h within 120 h in the dark. The wild-type, filamentous, non-heterocystous cyanobacterium Desertifilum sp. IPPAS B-1220 was found to produce a maximum of 0.229 μmol/mg Chl/h in the gas phase within 166 h in the light, which was on par with the maximum yield reported in the literature. DCMU at 10 μM increased H2 production by Desertifilum sp. IPPAS B-1220 by 1.5-fold to 0.348 μmol H2/mg Chl/h. This is the first report on the capability of Desertifilum cyanobacterium to produce H2.  相似文献   

14.
Polyaniline is a typical conducting polymer with high migration electron rate, good stability, eco-friendly properties, and high absorption coefficients for visible light. In the present study, polyaniline decorated Pt@TiO2 for visible light-driven H2 generation is reported for the first time. The above-mentioned nanocomposite is prepared through a simple oxidative-polymerization and characterized by infrared spectroscopy, transmission electron microscopy, X–ray diffraction, thermogravimetric analysis, and ultraviolet–visible diffuse reflectance spectra. Polyaniline modification improves the absorption of the nanocomposite in visible light region via a photosensitization effect similar to dye–sensitization but does not influence the crystal structure and size of Pt@TiO2. The polyaniline modified Pt@TiO2 exhibits a remarkable visible light activity (61.8 μmol h−1 g−1) and good stability for H2 generation (with an average apparent quantum yield of 10.1%) with thioglycolic acid as an electron donor. This work provides new insights into using conducting polymers, including polyaniline, as a sensitizer to modify Pt@TiO2 for visible-light hydrogen generation.  相似文献   

15.
《能源学会志》2020,93(2):533-541
The steam gasification properties of three different ranks of coals, Shengli lignite (SL), Shenhua subbituminous coal (SH), and Tavan Tolgoi anthracite (TT), were investigated using a lab-scale fixed-bed reactor, and the thermodynamic equilibrium constant and kinetics of the reaction were analyzed. The results showed that the aromaticity and condensation of aromatic structures in SL, SH, and TT became higher, and the maturity of organic substance became lower. The steam gasification reaction showed that the syngas from low-rank SL had a high H2/CO molar ratio, while the syngas from high-rank TT had relatively high CO content. The direct carbon gasification reactions for these three different ranks of coals were far from in equilibrium; the water gas shift reaction of SL was near equilibrium, and the degree of reaction for SL was higher than that of SH and TT. We studied a random pore model (RPM), shrinking core model (SCM), and hybrid model (HM), and the hybrid model was found to be the most suitable model of the three for fitting the steam gasification reactions of the three types of coal. It had high fitting correlation coefficient R2 values (ranging from 0.9939 to 0.9990) and small average error θ values (ranging from 0.009 to 0.016). The apparent activation energy E values of SL, SH, and TT fitted by HM were 179.10, 48.14, and 63.06 kJ/mol, respectively, and the corresponding pre-exponential factor k0 values were 3.14 × 107, 1.01, and 1.22 min−1, respectively. This study finds that the steam gasification of SL, SH, and TT coal samples consists of homogeneous phase reaction and shrinking core reaction.  相似文献   

16.
The use of multi-pore nanostructured g-C3N4 photocatalysts is an efficient approach to separate photogenerated charge carriers and increase visible light photocatalytic performance. Recent progress has yielded nanostructured material through hard templating, which limits potential applications. Integrating the 2D building block into multidimensional porous structures remains a significant challenge in scalable production. Herein, a novel technique based on P407 bubble clusters templating and fixation by freezing is described for the first time to fabricate a 3D opened-up macroporous g-C3N4 nanostructures for photocatalytic H2 evolution. Three-dimensional hierarchical nanostructures provide more contact active sites and synergistically promote the creation of heterogeneous catalytic interfaces. This feature is very useful for understanding the transfer path of photoinduced charges as well as the origins of the high charge separation efficiency in photocatalytic reactions, thus yielding a remarkable visible light-induced H2 evolution rate of 4213.6 μmol h−1 g−1, which is nearly 5.6 times (716 μmol h−1 g−1) higher than that of lamellar bulk g-C3N4. This newly developed approach offers a promising alternative to synthesize broad-spectral response 3D hierarchal g-C3N4 nanostructures and can be extended to assemble other functional nanomaterials as building blocks into macroscopic configurations coupled with electronic modulation strategy simultaneously.  相似文献   

17.
Under certain conditions, cyanobacteria can switch from photosynthesis to hydrogen production, which is a good energy carrier. However, the biological diversity of hydrogen-releasing cyanobacteria has a great unexplored potential. This study is aimed to investigate the ability of new strains of cyanobacteria Cyanobacterium sp. IPPAS B-1200, Dolichospermum sp. IPPAS B-1213, and Sodalinema gerasimenkoae IPPAS B-353 to release H2 and to evaluate the effects of photosystem II inhibitor 3-(3,4-dichlorphenyl)-1,1-dimethylurea (DCMU) on H2 production under light and dark conditions. The results showed that cultures treated with DCMU produced several times more H2 than untreated cells. The highest rate of H2 photoproduction of 4.24 μmol H2 (mg Chl a h)?1 was found in a Dolichospermum sp. IPPAS B-1213 culture treated with 20 μM DCMU.  相似文献   

18.
In this work, a sol-gel Ni–Mo2C–Al2O3 catalyst is employed for the first time in the glycerol steam reforming for syngas production. Catalyst stability and activity are investigated in the temperature range of 550 °C–700 °C and time on stream up to 30 h. As reaction temperature increases, from 550 °C to 700 °C, H2 yield boosts from 22% to 60%. The stability test, carried out at milder conditions (600 °C and Gas-Hourly Space-Velocity (GHSV) of 50,000 mL h−1.gcat−1), shows high catalyst stability, up to 30 h, with final conversion, H2 yield, and H2/CO ratio of 95%, 53% and 1.95, respectively. Both virgin and spent catalysts have been characterized by a multitude of techniques, e.g., Atomic-Absorption spectroscopy, Raman spectroscopy, N2-adsorption-desorption, and Transmission Electron Microscopy (TEM), among others. Regarding the spent catalysts, carbon deposits’ morphology becomes more graphitic as the reaction temperature increases, and the total coke formation is mitigated by increasing reaction temperature and lowering GHSV.  相似文献   

19.
Sugars released from lignocellulose biomass are a promising substrate for biohydrogen production. This study evaluates the effect of pH controlled between 4.0 and 7.5 on continuous dark-fermentative H2 production from the mixture of cellobiose, xylose and arabinose. High hydrogen production rate was obtained for pH values between 6.0 and 7.0 with a maximum of 7.41 ± 0.16 L/L-d at pH 7.0. On the other hand, the highest H2 yields of around 1.74 ± 0.02 mol/molconsumed were obtained at pH 4.5, 5.0 and 6.0. Cellobiose was completely utilized in nearly the entire pH range, while the highest consumption of xylose and arabinose was obtained at pH 6.0 and 7.0, respectively. It shows the challenges in selecting optimum pH for fermentation of mixed sugars. Significant impact of pH conditions on the microbial structure was observed. Between pH 4.0 and 7.0 Clostridium genus dominated the consortium, while above pH 7.0 relative abundance of Bacillus genus increased significantly.  相似文献   

20.
Municipal solid waste has been used for bio-methane production for many years. However, both methane and carbon dioxide that is produced during bio-methanization increases the greenhouse gas emissions; therefore, hydrogen production can be one of the alternatives for energy production from waste. Hydrogen production from the organic substance was studied in this study with the waste activated sludge from the municipal wastewater treatment. High rated activated sludge (HRAS) process was applied for the treatment to reduce energy consumption and enhance the organic composition of WAS. The highest COD removal (76%) occurred with the 12 g/L organic fraction of municipal solid waste (OFMSW) addition at a retention time of 120 min. The maximum hydrogen and methane yields for the WAS was 18.9 mL/g VS and 410 mL/g VS respectively. Total carbon emission per g VS of the substrate (OFMSW + waste activated sludge) was found as 0.087 mmol CO2 and 28.16 mmol CO2 for dark fermentation and bio-methanization respectively. These kinds of treatment technologies required for the wastewater treatment plantcompensate it some of the energy needs in a renewable source. In this way, the HRAS process decreases the energy requirement of wastewater treatment plant, and carbon-rich waste sludge enables green energy production via lower carbon emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号