首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water electrolysis for producing hydrogen is considered to be the most feasible means to develop new green energy. Compared with above, urea electrolysis can improve energy conversion efficiency by introducing urea, and can also be used for purification of wastewater rich in urea. In this paper, a bifunctional electrocatalyst with heterostructure, namely Fe7Se8@Fe2O3 nanosheets supported on nickel foam, were synthesized for the first time through typical hydrothermal and partial oxidation processes. Iron cation promotes electron transfer and adjusts electron structure under the synergistic action of selenium and oxygen anion, thus achieving excellent catalytic activity of urea electrolysis. In an alkaline solution of 1 M KOH with 0.5 M urea, the Fe7Se8@Fe2O3/NF catalyst can drive the current density of 10 mA cm?2 with requiring only potential of 1.313 V and overpotential of 141 mV for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER), respectively. What is noteworthy is that Fe7Se8@Fe2O3/NF heterostructure is used as bifunctional electrocatalyst to form urea electrolyzer device, which only needs potential of 1.55 V to drive current density of 10 mA cm?2, which is one of the best catalytic activities reported so far, and the electrode couple showed remarkable stability for 15 h. Density functional theory shows that the Fe7Se8@Fe2O3/NF material exhibits the minimum Gibbs free energy for the adsorption of hydrogen. This work provides a new method for exploring novel and environmentally friendly bifunctional electrocatalysts for urea electrolysis.  相似文献   

2.
Electrodeposition provides a simple but effective way to prepare advanced electrode for the application in electrochemical field. In this work, NiMoSe ternary nanospheres were deposited on nickel foam (NiMoSe/NF) by one-step electrodeposition. The morphology, phase and chemical composition of the electrode was characterized by using SEM, TEM, XRD and XPS. The electrode exhibited excellent performance for both urea oxidation reaction (UOR) and hydrogen evolution reaction (HER). It only required 1.39 V and 81 mV (vs. RHE) to deliver a current density of 10 mA/cm2 for UOR and HER, respectively. The electrolyzer constructed with NiMoSe/NF as both anode and cathode could deliver a current density of 10 mA/cm2 at a driving potential of 1.44 V. The stability test showed that the electrode had good durability as electrode for both UOR and HER. Considering the easiness, simplicity and low cost, the NiMoSe/NF electrode could find wide application in urea electrolysis.  相似文献   

3.
The anode oxygen evolution reaction (OER) is a delayed half-reaction of water splitting that requires a relatively high overpotential. Therefore, a more easily oxidized urea oxidation reaction (UOR) has been implemented to replace OER. Co–Mo-based bimetallic oxides have been recognized as interesting candidates for electrocatalytic water splitting due to their unique d electron configurations, but the low conductivity and limited active sites still hinder their development. Herein, we demonstrated that anion-modulation in CoMoO4 nanoplates as coupled hydrogen evolution reaction (HER) and UOR for convenient and efficient urea-assisted hydrogen-production system are demonstrated. The findings of the experiments show that nitrogen doping and phosphorus doping exhibit excellent activity toward alkaline HER and UOR, respectively. As a result, the N–CoMoO4 and P–CoMoO4 electrode exhibit low potentials of ?0.062 V and 1.251 V (vs. RHE) to reach a current of 10 mA cm?2 for HER and UOR. The full urea electrolysis is driven by N–CoMoO4||P–CoMoO4 executes stably for 24 h at a low potential of 1.41 V. This is a unique anion-modulation method in electrocatalysts to combine hydrogen generation and sewage treatment, which could pave the way for the creation of long-term energy conversion systems.  相似文献   

4.
The urea solution electrolysis has become more attractive than water splitting, because it not only produces clean H2 via the cathodic hydrogen evolution reaction (HER) with lower cell voltage, but also treats sewage containing urea through anodic urea oxidation reaction (UOR). However, lack of efficient electrocatalysts for HER and UOR has limited its development. Herein, hairy sphere -like Ni9S8/CuS/Cu2O composites were synthesized on nickel foam (NF) in situ by a two-step hydrothermal method. The Ni9S8/CuS/Cu2O/NF exhibited good electrocatalytic activity for both HER (?0.146 V vs. RHE to achieve 10 mA cm?2) and UOR (1.357 V vs. RHE to achieve 10 mA cm?2). Based on the bifunctional properties of Ni9S8/CuS/Cu2O/NF, a dual-electrode urea solution electrolytic cell was constructed, which only needed a low voltage of 1.47 V to reach a current density of 10 mA cm?2, and displayed a good stability during a 20-h test. In addition, the reason for the good catalytic activity of Ni9S8/CuS/Cu2O/NF was analyzed and the UOR mechanism was discussed in detail. Our research shows that Ni9S8/CuS/Cu2O/NF is a very promising low-cost dual-function electrocatalyst, which can be used for high-efficiency electrolysis of urea solution to produce hydrogen and treat wastewater.  相似文献   

5.
Self-standing and hybrid MoS2/Ni3S2 foam is fabricated as electrocatalyst for hydrogen evolution reaction (HER) in alkaline medium. The Ni3S2 foam with a unique surface morphology results from the sulfurization of Ni foam showing a truncated-hexagonal stacked sheets morphology. A simple dip coating of MoS2 on the sulfurized Ni foam results in the formation of self-standing and hybrid electrocatalyst. The electrocatalytic HER performance was evaluated using the standard three-electrode setup in the de-aerated 1 M KOH solution. The electrocatalyst shows an overpotential of 190 mV at ?10 mA/cm2 with a Tafel slope of 65.6 mV/dec. An increased surface roughness originated from the unique morphology enhances the HER performance of the electrocatalyst. A density functional approach shows that, the hybrid MoS2/Ni3S2 heterostructure synergistically favors the hydrogen adsorption-desorption steps. The hybrid electrocatalyst shows an excellent stability under the HER condition for 12 h without any performance degradation.  相似文献   

6.
A novel tungsten carbide promoted Pt/C (Pt-WC/C) was prepared by an intermittent microwave heating (IMH) method and used for the cathode electrocatalyst in an electrolyser for hydrogen production by methanol electrolysis. The electrolyser showed better performance for hydrogen production using the Pt-WC/C cathode electrocatalyst than using a commercial Pt/C cathode electrocatalyst. The single cell electrolyser gave reasonable current at voltages lower than 0.4 V. The novelty of this technique is the inherent simplicity and substantially lowered cost.  相似文献   

7.
Water electrolysis is known as an efficient strategy in the direction of green energy production to remove fossil fuels and generate hydrogen. On the other hand, the slow kinetics of the anodic half-reaction (OER) significantly reduces the efficiency of this system. Therefore, choosing an alternative to OER has become a new and reliable approach. Urea oxidation reaction (UOR) is considered an excellent alternative to OER due to its low required potential (0.37V), the abundance of urea sources (industrial waste and human/animal urine), and harmless by-products (N2, CO2). Electrocatalysts based on non-noble metals such as nickel, cobalt, molybdenum, manganese, iron, and copper in electrochemical urea-assisted water splitting due to their high electrocatalytic performance and lower price than noble metals play an essential role in reducing costs and increasing the efficiency of this system. This review investigated the electrochemical water splitting reaction and its anodic and cathodic half-reactions. Then, urea, electro-oxidation of urea, methods of making catalysts, measuring parameters of electrocatalytic properties, solutions to improve performance, and types of non-noble catalysts used in this field were reviewed, and finally, challenges and solutions to improve results in the future were introduced.  相似文献   

8.
The development of non-precious metal-based highly active bi-functional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is critical factor for making water electrolysis a viable process for large-scale industrial applications. In this study, bi-functional water splitting electrocatalysts in the form of nickel-sulfide/nickel nanoparticles integrated into a three-dimensional N-doped porous carbon matrix, are prepared using NaCl as a porous structure-forming template. Microstructures of the catalytic materials are characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and N2 adsorption-desorption analysis. The most active catalyst synthesized in this study exhibits a low HER overpotential of 70 mV at 10 mA cm−2 and a low Tafel slope of 45 mV dec−1. In OER, the optimized sample performs better than a state-of-the-art RuO2 catalyst and produces an overpotential of 337 mV at 10 mA cm−2, lower than that of RuO2. The newly obtained materials are also used as HER/OER electrocatalysts in a specially assembled two-electrode water splitting cell. The cell demonstrates high activity and good stability in overall water splitting.  相似文献   

9.
Finding a suitable replacement for the high potential of anodic water electrolysis (oxygen evolution reaction (OER)) is significant for hydrogen energy storage and conversion. In this work, a simple and scalable method synthesizes a structurally unique Ni3N nanoarray on Ni foam, Ni3N-350/NF, that provides efficient electrocatalysis for the urea oxidation reaction (UOR) that transports 10 mA cm−2 at a low potential of 1.34 V. In addition, Ni3N-350/NF exhibits electro-defense electrocatalytic performance for hydrogen evolution reaction, which provides a low overpotential of 128 mV at 10 mA cm−2. As proof of concept, all-water-urea electrolysis measurement is carried out in 1 M KOH with 0.5 M Urea with Ni3N-350/NF as cathode and anode respectively. Ni3N-350/NF||Ni3N-350/NF electrode can provide 100 mA cm−2 at a voltage of only 1.51 V, 160 mV less than that of water electrolysis, which proves its commercial viability in energy-saving hydrogen production.  相似文献   

10.
Developing earth-abundant and highly active bifunctional electrocatalysts are critical to advance sustainable hydrogen production via alkaline water electrolysis but still challenging. Herein, heterojunction hybrid of ultrathin molybdenum disulfide (MoS2) nanosheets and non-stoichiometric nickel sulfide (Ni0.96S) is in situ prepared via a facile one-step hydrothermal strategy, followed by annealing at 400 °C for 1 h. Microstructural analysis shows that the hybrid is composed of intimate heterojunction interfaces between Ni0.96S and MoS2 with exposed active edges provided by ultrathin MoS2 nanosheets and rich defects provided by non-stoichiometric Ni0.96S nanocrystals. As expected, it is evaluated as bifunctional electrocatalysts to produce both hydrogen and oxygen via water electrolysis with a hydrogen evolution reaction (HER) overpotential of 104 mV at 10 mA cm−2 and an oxygen evolution reaction (OER) overpotential of 266 mV at 20 mA cm−2 under alkaline conditions, outperforming most current noble-metal-free electrocatalysts. This work provides a simple strategy toward the rational design of novel heterojunction electrocatalysts which would be a promising candidate for electrochemical overall water splitting.  相似文献   

11.
Developing highly efficient bifunctional urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) catalysts for urea splitting to hydrogen are one of the strategies to cope with the energy crisis. Here, a series of CrxPy-a/ComPn-b composites were synthesized on Ni foam through hydrothermal and low-temperature phosphorization process for the first time. It is worth noting that CrxPy-1/ComPn-3@NF exhibited excellent UOR performance (1.331 V at 100 mA cm?2) and HER performance (0.299 V at 100 mA cm?2) in an electrolyte of 1 M KOH and 0.5 M urea due to the synergistic effect of Cr–Co. The CrxPy-1/ComPn-3@NF||CrxPy-1/ComPn-3@NF two-electrode system call for only 1.52 V to provide current density of 10 mA cm?2, which is one of the best electrochemistry performances reported up to now. Experimental analysis show that the promoted electrochemistry performances is assigned to faster charge transfer rate, the exposure of more reaction site and better properties of metals. Density Functional theory (DFT) results demonstrate that the presence of the ComPn material accelerates the kinetics of hydrogen production and the CrxPy material improves the properties of metals for the electrode. The work provides a new idea to develop the environmentally friendly and low cost overall urea splitting catalyst with transition metals instead of noble metals.  相似文献   

12.
Hydrogen, as the one of clean energy source, has the advantages of high energy density and carbon-free emission. Water electrolysis is one of the most promising ways to generate hydrogen, but the rather high energy required seriously hinders its widespread applications yet. In this study, we report an alkaline electrolyzer to implement energy-saving H2 generation by coupling cathodic hydrogen evolution reaction (HER) with anodic glucose oxidation reaction (GOR) other than oxygen evolution reaction, in which nickel-doped MoS2 nanoparticles (Ni–MoS2 NPs) has been developed as bifunctional electrocatalyst for HER and GOR. The electrolyzer only requires a cell voltage of 1.67 V to reach an electrolysis current density of 10 mA cm−2, about 270 mV lower than the corresponding value in the traditional electrolyzer. Electrolytic H2 generation with the assistance of biomass derived materials may open a new way for the future sustainable development.  相似文献   

13.
A new process for chlorine-free seawater electrolysis is proposed in this study. The first step of the process is separation of Mg2+ and Ca2+ ions from seawater by nanofiltration. Next, the NF permeate is dosed into the electrochemical system. There it is completely split into hydrogen and oxygen gases and NaCl precipitate. The electrochemical system comprises an electrochemical cell operated at elevated temperatures (e.g. ≥ 50 °C) and a settling tank filled with aqueous NaOH solution (20–40 %wt) that operates at lower temperatures (e.g. 20–30 °C). High concentration of hydroxide ions in the electrolyzed solution prevents anodic chlorine evolution, while the accumulated NaCl precipitates in the settling tank. Batch electrolysis tests, performed in NaCl-saturated NaOH solutions, showed absolutely no chlorine formation on Ni200 and Ti/IrO2RuO2TiO2 anodes at [NaOH] > 100 g/kgH2O. Three long-term operations (9, 12 and 30 days) of the electrochemical system showed no Cl2 or chlorate (ClO3?) production on both electrodes operated at current densities of 93–467 mA/cm2. The Ni200 anode was corroded in the continuous operation that resulted in formation of nickel oxide on the anode surface. On the other hand, the system was successfully operated at 467 mA/cm2 with Ti/IrO2RuO2TiO2 electrodes in NaCl-saturated solution of NaOH (30 %wt) for 12 days. During this period no formation of Cl2 and ClO3? has been observed and precipitation of NaCl occurred only in the settling tank. The performance of the system was stable during the operation as indicated by the insignificant fluctuations in the applied cell potentials and measured constant concentrations of NaOH(aq) and NaCl(aq) in the electrolyte solution. During 12 days of operation at ≈ 470 mA/cm2 about 1.2 m3 of H2 and ≈150 g of solid NaCl were produced in the system. Electrical energy demand of the electrolysis cell was 5.6–6.7 kWh/m3H2 for the current density range of 187–467 mA/cm2.  相似文献   

14.
In order to solve the problem of large overpotential in water electrolysis for hydrogen production, transition metal sulfides are promising bifunctional electrocatalysts for hydrogen evolution reaction/oxygen evolution reaction that can significantly reduce overpotential. In this work, Ni3S2 and amorphous MoSx nanorods directly grown on Ni foam (Ni3S2-MoSx/NF) were prepared via one-step solvothermal process, which were used as a high-efficient electrocatalyst for overall water splitting. The Ni3S2-MoSx/NF composite exhibits very low overpotentials of 65 and 312 mV to reach 10 mA cm−2 and 50 mA cm−2 in 1.0 M KOH for HER and OER, respectively. Besides, it exhibits a low Tafel slope (81 mV dec−1 for HER, 103 mV dec−1 for OER), high exchange current density (1.51 mA cm−2 for HER, 0.26 mA cm−2 for OER), and remarkable long-term cycle stability. This work provides new perspective for further the development of highly effective non-noble-metal materials in the energy field.  相似文献   

15.
The development of cost-effective and high-efficiency electrocatalysts for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) still remains highly challenging. Exposing as many active sites as possible is the key method to improve activity of HER and OER performance. In this communication, we demonstrate a novel 3D hierarchical network NiCo2S4 nanoflake grown on Ni foam (NiCo2S4-NF) as a highly efficient and stable electrochemical catalyst. The NiCo2S4-NF exhibits overpotentials as low as 289 and 409 mV at 100 mA cm?2, superior long-term durability during a 20 h measurement, and a low Tafel slope of 89 and 91 mV dec?1 for HER and OER in 1.0 M NaOH solution. The outstanding performance is owe to the inherent activity of ultrathin NiCo2S4 nanoflakes and the special structure of NiCo2S4-NF that can provide a huge number of exposed active sites, accelerate the transfer of electrons, and facilitate the diffusion of electrolyte simultaneously.  相似文献   

16.
Hydrogen is a carbon-free alternative energy source for use in future energy frameworks with the advantages of environment-friendliness and high energy density. Among the numerous hydrogen production techniques, sustainable and high purity of hydrogen can be achieved by water electrolysis. Therefore, developing electrocatalysts for water electrolysis is an emerging field with great importance to the scientific community. On one hand, precious metals are typically used to study the two-half cell reactions, i.e., hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). However, precious metals (i.e., Pt, Au, Ru, Ag, etc.) as electrocatalysts are expensive and with low availability, which inhibits their practical application. Non-precious metal-based electrocatalysts on the other hand are abundant with low-cost and eco-friendliness and exhibit high electrical conductivity and electrocatalytic performance equivalent to those for noble metals. Thus, these electrocatalysts can replace precious materials in the water electrolysis process. However, considerable research effort must be devoted to the development of these cost-effective and efficient non-precious electrocatalysts. In this review article, we provide key fundamental knowledge of water electrolysis, progress, and challenges of the development of most-studied electrocatalysts in the most desirable electrolytic solutions: alkaline water electrolysis (AWE), solid-oxide electrolysis (SOE), and proton exchange membrane electrolysis (PEME). Lastly, we discuss remaining grand challenges, prospect, and future work with key recommendations that must be done prior to the full commercialization of water electrolysis systems.  相似文献   

17.
Development of highly effective and stable electrocatalysts is urgent for various energy conversion applications. Herein, a facile co-reduction approach was developed to fabricate three-dimensional (3D) hyperbranched PtRh nanoassemblies (NAs) under solvothermal conditions, where creatinine and cetyltrimethylammonium chloride (CTAC) were employed as the structure-directing agents. The as-synthesized nanocatalyst exhibited intriguing catalytic characters for hydrogen evolution reduction (HER) with a low overpotential (20 mV) at 10 mA cm−2 and a small Tafel slope (49.01 mV dec−1). Meanwhile, the catalyst showed remarkably enlarged mass activity (MA: 2.16/2.02 A mg−1) and specific activity (SA: 4.16/3.88 mA cm−2) towards ethylene glycol and glycerol oxidation reactions (EGOR and GOR) alternative to commercial Pt black and homemade Pt3Rh nanodendrites (NDs), PtRh3 NDs and Pt nanoparticles (NPs). This method offers a feasible platform to fabricate bifunctional, efficient, durable and cost-effective nanocatalysts with finely engineered structures and morphologies for renewable energy devices.  相似文献   

18.
Reasonable design of efficient and stable catalysts with low cost and abundant natural reserves is vital for electrocatalytic water splitting. Herein, novel nanotremella-like Bi2S3/MoS2 composites with different mass ratios between Bi2S3 and MoS2 have been successfully prepared through a hydrothermal approach and further applied to hydrogen evolution reaction (HER) in 1.0 M KOH electrolyte for the first time. When the mass ratio of Bi2S3 and MoS2 is 5:5, as-prepared nanotremella-like Bi2S3/MoS2 (marked as BMS-5) manifests favorable HER catalytic activity with overpotential of 124 mV at current density of 10 mA cm−2 and relatively low Tafel slope of 123 mV dec−1. Moreover, it exhibits an extraordinary durability for uninterrupted hydrogen generation. The enhanced HER performances are ascribed to the synergistic effects between Bi2S3 and MoS2, giving rise to large electrocatalytic active area and fast HER kinetics. The results pave a new path to design and construct excellent Bi2S3/MoS2 nanomaterials for electrocatalytic hydrogen generation.  相似文献   

19.
It has been shown that urea electrolysis is a viable method for wastewater remediation and simultaneous production of valuable hydrogen. Inexpensive nickel catalyst is optimal for the oxidation of urea in alkaline media but improvements are needed to minimize surface blockage and increase current density. Multi-metal catalysts were investigated by depositing platinum group metals on a nickel substrate. Rhodium and nickel proved synergistic to reduce surface blockage and increase catalyst stability. Rh-Ni electrodes reduced the overpotential for the electro-oxidation of urea and improved the current density by a factor of 200 compared to a Ni catalyst.  相似文献   

20.
We present a facile methodology for the synthesis of a novel 2D-MoS2, graphene and CuNi2S4 (MoS2-g-CuNi2S4) nanocomposite that displays highly efficient electrocatalytic activity towards the production of hydrogen. The intrinsic hydrogen evolution reaction (HER) activity of MoS2 nanosheets was significantly enhanced by increasing the affinity of the active edge sites towards H+ adsorption using transition metal (Cu and Ni2) dopants, whilst also increasing the edge sites exposure by anchoring them to a graphene framework. Detailed XPS analysis reveals a higher percentage of surface exposed S at 17.04%, of which 48.83% is metal bonded S (sulfide). The resultant MoS2-g-CuNi2S4 nanocomposites are immobilized upon screen-printed electrodes (SPEs) and exhibit a HER onset potential and Tafel slope value of – 0.05 V (vs. RHE) and 29.3 mV dec−1, respectively. These values are close to that of the polycrystalline Pt electrode (near zero potential (vs. RHE) and 21.0 mV dec−1, respectively) and enhanced over a bare/unmodified SPE (– 0.43 V (vs. RHE) and 149.1 mV dec−1, respectively). Given the efficient, HER activity displayed by the novel MoS2-g-CuNi2S4/SPE electrochemical platform and the comparatively low associated cost of production for this nanocomposite, it has potential to be a cost-effective alternative to Pt within electrolyser technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号