共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2023,48(42):15737-15747
The transformation from a fossil fuels economy to a low carbon economy reshapes how energy is transmitted. Since most renewable energy is harvested in the form of electricity, hydrogen obtained from water electrolysis using green electricity is considered a promising energy vector. However, the storage and transportation of hydrogen at large scales pose challenges to the existing energy infrastructures, both regarding technological and economic aspects. To facilitate the distribution of renewable energy, a set of candidate hydrogen transportation infrastructures using methanol and ammonia as hydrogen carriers were proposed. A systematical analysis reveals that the levelized costs of transporting hydrogen using methanol and ammonia in the best cases are $1879/t-H2 and $1479/t-H2, respectively. The levelized cost of energy transportation using proposed infrastructures in the best case is $10.09/GJ. A benchmark for hydrogen transportation infrastructure design is provided in this study. 相似文献
2.
Ammonia, being a good source of hydrogen, has the potential to play a significant role in a future hydrogen economy. The hydrogen content in liquid ammonia is 17.6 wt% compared with 12.5 wt% in methanol. Although a large percentage of ammonia, produced globally, is currently used in fertiliser production, it has been used as a fuel for transport vehicles and for space heating. Ammonia is an excellent energy storage media with infrastructure for its transportation and distribution already in place in many countries. Ammonia is produced at present through the well known Haber–Bosch process which is known to be very energy and capital intensive. In search for more efficient and economical process and in view of the potential ammonia production growth forecast, a number of new processes are under development. Amongst these, the electrochemical routes have the potential to substantially reduce the energy input (by more than 20%), simplify the reactor design and reduce the complexity and cost of balance of plant when compared to the conventional ammonia production route. Several electrochemical routes based on liquid, molten salt, solid or composite electrolytes consisting of a molten salt and a solid phase are currently under investigation. In this paper these electrochemical methods of ammonia synthesis have been reviewed with a discussion on materials of construction, operating temperature and pressure regimes, major technical challenges and materials issues. 相似文献
3.
《International Journal of Hydrogen Energy》2021,46(79):39011-39022
The main object of this research is the development of a mathematical framework to simulate a commercial ammonia plant and obtaining the optimal operating conditions of process at steady state condition. The considered ammonia plant consists of steam and autothermal reforming reactors, low and high temperature shift converters, hydrogen purification section, methanation, and ammonia synthesis reactors. The catalytic reactors are heterogeneously modeled based on the mass and energy balance equations considering heat and mass transfer resistances in the gas and catalyst phases. In addition, an equilibrium model is applied to simulate the absorption column. Then, the accuracy of developed framework is investigated against plant data. The results show that the internal mass transfer resistance in the commercial catalyst limits the syngas production in the reforming section. In the second step, an optimization problem is formulated to enhance the ammonia production considering safety and operating limitations. The formulated optimization problem is handled employing the genetic algorithm. The results show that more syngas production in the optimized hydrogen unit is one of the main reasons for higher ammonia synthesis in the considered plant. Applying optimal conditions on the process increases ammonia production potential from 1890 to 2179 mol s−1. 相似文献
4.
Jarrett Riley Chris Atallah Ranjani Siriwardane Robert Stevens 《International Journal of Hydrogen Energy》2021,46(39):20338-20358
Catalytic Methane Pyrolysis (CMP) is an innovative method to convert gaseous methane into valuable H2 and carbon products. The catalytic approach to methane pyrolysis has the potential to decrease the required operating temperature for methane decomposition from >1000 °C to under 700 °C. In this work, a novel inexpensive catalyst is discussed that displays low operating temperatures, while still maintaining high reactivity and long proven lifetimes. The kinetics associated with the catalyst's performance are modeled and a correlation was developed for use with practical simulation tools. A techno-economic assessment was conducted applying experimentally determined kinetics for the CMP reaction with the specific catalyst. Two process concepts that utilize CMP using the novel catalyst are presented in this work. Optimizations were considered in these processes and the CO2 emissions and cost of hydrogen production of the two optimized cases, CMP with H2 combustion (CMP-H2) and CMP with CH4 Combustion (CMP-CH4), are compared to that of the current industrial standard for hydrogen production, Steam Methane Reforming with carbon capture and sequestration (SMR-CCS). Both of the proposed concepts convert methane into gaseous hydrogen and valuable carbon products, graphitic carbon to carbon Nano fibers. The carbon price was treated as a variable to determine the sensitivity of hydrogen production cost to the carbon price. The analysis indicates that cost of hydrogen production is highly dependent on the recovery and sale of carbon byproducts. Based on Aspen modeling of these two concepts for large scale hydrogen production (216 tons/day), the cost of hydrogen production, without considering carbon sales, was estimated to be $<3.25/kg, assuming a natural gas price of $7/MMBTU and conservative catalyst cost of $8/kg. Assuming 100% recovery of carbon, the price can be reduced to $0/kg by selling the carbon at <$1/kg. A market assessment suggests that values of graphitic carbon and carbon fibers range from ~$10/kg and ~$25–113/kg, respectively. The cost of H2 production via conventional SMR is ~$2.2/kg when accounting for the cost of CO2 sequestration. The proposed processes produce a maximum of 0–2 kg CO2/kg H2 in contrast to the 10 kg CO2/kg H2 produced via conventional SMR-CCS. The process displays an enormous potential for competitive economics accompanied by reduced greenhouse gas emissions. 相似文献
5.
《International Journal of Hydrogen Energy》2023,48(37):13767-13779
Hydrogen production by electrolysis technology spurs as extensive investigation toward new clear energy acquisition. The mainstream hydrogen production electrolyzers, including alkaline electrolyzer (ALK), anion exchange membrane electrolyzer (AEM), and proton exchange membrane electrolyzer (PEM), are traced to compare their current and future hydrogen production cost regarding technology development. Technologies' characteristics are originally described as the polarization curve parameters such as current density, overpotential, and polarization curve slope. The feature of crucial materials such as catalysts and membranes are also taken into consideration. Then, a bottom-up hydrogen production cost prediction model stemming from technical factors is established with a combination of manufacturing and operating considerations. According to model predictions, the cost of hydrogen production of ALK will be 23.85% and 51.59% lower than AEM and PEM technologies in the short term. However, under technological advancement or breakthrough, the hydrogen production cost of AEM and PEM is expected to be 24% and 56.5% lower in the medium-term and long-term, respectively. The lifetime of the electrolyzers is significantly vital to affect the cost of hydrogen production. The cost reduction space brought about by various technical factors is also explored for the blueprint planning of the hydrogen economy. 相似文献
6.
《International Journal of Hydrogen Energy》2020,45(15):8041-8051
BaCe0·7Zr0.1Gd0.2O3-δ (BCZG) powder is synthesized by a citrate sol-gel method, and different amounts of Li2CO3 are introduced to lower the sintering temperature. The densification temperature of BCZG ceramic is decreased drastically to 1250 °C by using Li2CO3 as sintering aid. BCZG with 2.5 wt% of Li2CO3 (BCZG-2.5L) can not only remarkably promote the sintering process of BCZG but also enhance its electrical conductivity. The total ionic conductivity of BCZG-2.5L attains to 1.9 × 10−2 S cm−1 at 600 °C in a wet H2 atmosphere. Ammonia synthesis at atmospheric pressure is conducted on (2K, 10Fe)/Ni-BCZG | BCZG-2.5L | Ni-BCZG electrolytic cell with an applied voltage of 0.2–1.6 V at a temperature of 450–600 °C. The highest NH3 formation rate of 1.87 × 10−10 mol s−1 cm−2 and the highest current efficiency of 0.53% is achieved at 500 °C with an applied voltage of 0.8 V. 相似文献
7.
This article is the second paper of a serial study on hydrogen energy system modelling. In the first study, we proposed a stylized hydrogen supply chain architecture and its pathways for the representation of hydrogen systems in bottom-up energy system models. In this current paper, we aim to present and assess techno-economic inputs and bandwidths for a hydrogen production module in bottom-up energy system models. After briefly summarizing the current technological status for each production method, we introduce the parameters and associated input data that are required for the representation of hydrogen production technologies in energy system modelling activities. This input data is described both as numeric values and trend line modes that can be employed in large or small energy system models. Hydrogen production technologies should be complemented with hydrogen storage and delivery pathways to fully understand the system integration. In this context, we will propose techno-economic inputs and technological background information for hydrogen delivery pathways in later work, as the final paper of this serial study. 相似文献
8.
Firman Bagja Juangsa Adrian Rizqi Irhamna Muhammad Aziz 《International Journal of Hydrogen Energy》2021,46(27):14455-14477
Hydrogen (H2) is a secondary energy source (energy carrier) which has advantages of high cleanliness and efficiency, leading to its potential utilization in the future energy system. However, H2 suffers a great challenge in its storage because of low volumetric energy density. Among the available technologies and media for H2 storage, ammonia (NH3) is considered very promising due to its characteristics of high hydrogen density, excellent storage, high stability, and matured technology and infrastructure. Currently, NH3 is massively produced through Haber-Bosch process conducted at high pressure and temperature. Therefore, large energy is consumed to synthesize NH3. There are several other alternative technologies for NH3 synthesis, including thermochemical, electrochemical, photochemical, and plasma-assisted processes. This paper reviews mainly both thermochemical and electrochemical NH3 production technologies, including their updates and challenges, and also by considering both technological feasibility and applicability. In addition, several projects and efforts carried out by several countries to utilize NH3 as potential fuel in the energy system are also overviewed. Furthermore, technological analysis, challenges, and recommendations are also provided with the objective of evaluating the potential adoption of NH3 in the future energy system. 相似文献
9.
《International Journal of Hydrogen Energy》2020,45(60):35108-35117
Nowadays, carbon-rich fuels are the principal energy supply utilized for powering human society, and it will be continued for the next few decades. Connecting with this, modern energy technologies are very essential to convert the available limited carbon-rich fuels and other green alternative energies into useful energy efficiently with an insignificant environmental impression. Amongst all kinds of power generation systems, SOFCs running with high temperatures are emerging as a frontrunner in chemical to electrical transformation efficiency, allows the engagement of all-embracing fuel varieties with negligible environmental impact. This study investigates the effect of ammonia usage in tubular SOFC performance. Firstly, the use of ammonia and hydrogen in the electrolyte-supported SOFC (ES-SOFC) has investigated. Then, the effect of using ammonia in anode-supported SOFC (AS-SOFC), ES-SOFC and cathode-supported SOFC (CS–SOFC) on performance has been examined by using COMSOL software. As a result of the study performed, it is found that the ammonia can be used in tubular SOFC's as a carbon-free fuel and CS-SOFC shows better performance compared with ES-SOFC and AS-SOFC. Besides, the findings of this study indicate that the use of ammonia as a fuel for SOFCs is comparable to the use of hydrogen. 相似文献
10.
Ankur Jain Hiroki Miyaoka Sanjay Kumar Takayuki Ichikawa Yoshitsugu Kojima 《International Journal of Hydrogen Energy》2017,42(39):24897-24903
Recently ammonia has emerged as a potential hydrogen storage material because it contains 17.8 wt% hydrogen. Here, we propose a new synthesis route of ammonia production using hydrolysis of nitrides, which is based on the conversion technique using thermal energy, solar heat or exhaust heat to form NH3 directly. Lithium metal has been tested as a starting material for the above purpose. We present the detailed results on room temperature nitridation of lithium metal, it is found that the nitridation properties are strongly affected by the surface state of lithium metal. The ammonia synthesis via hydrolysis of lithium nitride succeeds and it is strongly dependent on the reaction rate and temperature. 相似文献
11.
《International Journal of Hydrogen Energy》2023,48(30):11237-11273
As a carbon-free molecule, ammonia has gained great global interest in being considered a significant future candidate for the transition toward renewable energy. Numerous applications of ammonia as a fuel have been developed for energy generation, heavy transportation, and clean, distributed energy storage. There is a clear global target to achieve a sustainable economy and carbon neutrality. Therefore, most of the research's efforts are concentrated on generating cost-effective renewable energy on a large scale rather than fossil fuels. However, storage and transportation are still roadblocks for these technologies, for example, hydrogen technologies. Ammonia could be replaced as a viable fuel for a clean and sustainable future of global energy. More efforts from governments and scientists can lead to making ammonia a clean energy vector in most energy applications. In this review, ammonia synthesis was assessed, including conventional Haber–Bosch technology. Current hydrogen technologies as the key parameters for ammonia generation are also evaluated. The role of ammonia as a hydrogen-based fuel and generation roadmap are discussed for future utilization of energy mix. Further, ammonia generation processes are addressed in depth, including blue and green ammonia generation. A survey of ammonia synthesis catalytic materials was conducted and the role of catalyst materials in ammonia generation was compared, which showed that the Ru-based catalyst generated the maximum ammonia after 20 h of starting experiment. An end-use plan for using ammonia as a clean energy fuel in vehicles, marines, gas turbines as well as fuel cells, is briefly discussed to recognize the potential applications of ammonia use. The practical and future end-use vision of energy sources is proposed to achieve great benefits at low carbon emissions and costs. This review can provide prospective knowledge of large-scale aspects and environmental considerations of ammonia. Herein, we conclude that ammonia will become the “clean energy carrier link” that will achieve the global energy and economy sustainability targets. 相似文献
12.
《International Journal of Hydrogen Energy》2020,45(16):9811-9820
In biohydrogen processes, H2 is often present in gas mixtures with CO2 and N2. Therefore, we present a separation process that combines electrochemical hydrogen separation (ECHS) and amine-based temperature vacuum swing adsorption (TVSA). Such a separation process does not require the compression of the bulk feed. For the ECHS, a trade-off between cell potential, i.e. power consumption, and stack size, i.e. investment costs, existed. The optimal cell voltage laid in the range of 0.1–0.2 V resulting in costs of 0.37 €/kgH2. Equivalently, the energy consumption and throughput for the TVSA must be balanced. The optimal desorption pressure and temperature of 0.025 bar and 100 °C resulted in costs of 2.30 €/kgH2. Thus, the total costs for the separation process were 2.67 €/kgH2, which are in the range of the separation costs of a binary H2/CO2 mixture with a similar H2 feed fraction. 相似文献
13.
《International Journal of Hydrogen Energy》2023,48(25):9139-9154
Green energy commodities are expected to be central in decarbonising the global energy system. Such green energy commodities could be hydrogen or other hydrogen-based energy commodities produced from renewable energy sources (RES) such as solar or wind energy. We quantify the production cost and potentials of hydrogen and hydrogen-based energy commodities ammonia, methane, methanol, gasoline, diesel and kerosene in 113 countries. Moreover, we evaluate total supply costs to Germany, considering both pipeline-based and maritime transport. We determine production costs by optimising the investment and operation of commodity production from dedicated RES based on country-level RES potentials and country-specific weighted average costs of capital. Analysing the geographic distribution of production and supply costs, we find that production costs dominate the supply cost composition for liquid or easily liquefiable commodities, while transport costs dominate for gaseous commodities. In the case of Germany, importing green ammonia could be more cost-efficient than domestic production from locally produced or imported hydrogen. Green ammonia could be supplied to Germany from many regions worldwide at below the cost of domestic production, with costs ranging from 624 to 874 $/t NH3 and Norway being the cheapest supplier. Ammonia production using imported hydrogen from Spain could be cost-effective if a pan-European hydrogen pipeline grid based on repurposed natural gas pipelines exists. 相似文献
14.
《International Journal of Hydrogen Energy》2021,46(72):35525-35549
Hydrogen is seen as a promising and inevitable energy carrier in the transition towards a carbon-free energy era. This study reviews the potential for carbon-free hydrogen production, utilisation and exportation from the State of Qatar. The study aims to introduce a roadmap for current and future exploration of carbon-free hydrogen production and exportation from Qatar, for which an assessment of several available alternatives for the production of hydrogen in Qatar is performed. These alternatives include the use of natural gas as a feedstock for hydrogen production through steam methane reforming (SMR), solar integrated steam methane reforming with carbon capture, as well as the possibilities for hydrogen production from electrolysis using renewables and ammonia as another intermediate. The potential of each alternative is reviewed based on selected technical, economic and environmental criteria. The findings of this review study indicate that the production and exportation of blue ammonia currently present the best pathway for Qatar, while green hydrogen is expected to become as competitive as blue ammonia in the mid-future. It is widely accepted that as the technologies associated with clean hydrogen production improve, and the cost of renewable energy falls, green hydrogen will become quite competitive in the region. 相似文献
15.
《International Journal of Hydrogen Energy》2022,47(32):14375-14392
Hydrogen-based microgrids are receiving attention as critical pathways are being charted for the decarbonization of our thermal, transport, and power grids. In this article, clean, cost-effective, and reliable hybrid microgrid designs are developed to satisfy hydrogen and electricity loads in three energy-stressed islands of Eastern Canada, namely Pelee, Wolfe, and Saint Pierre. The design iterations incorporate elements of solar, wind, fuel cells, Hydrogen, and electricity storage. Real-time field irradiation, wind speed, ambient temperature, and load data over 8760 h have been used to drive the designs. Although the anticipated inflation rate in Newfoundland is higher than in Ontario, the lowest net present cost (NPC) of the hybrid solution is found in Saint Pierre Island. The hydrogen cost, in this case, is $7.5/kgH2 and $15.8/kgH2 lower than that of Pelee and Wolfe islands, respectively. The maximum H2 tank capacity (≥680 kgH2) on Pelee Island is 3000 h/yr and 1000 h/yr lower than optimal cases in Saint Pierre and Wolf Islands, respectively. LCOE is more sensitive to market changes in fuel cell costs than other components. The highest LCOE reduction (~63%) is observed when the optimal case in Pelee Island increases its lifetime. Analyzing the volatility in resource assessment indicates that predicting the energy cost over a short-term project is challenging. The salvage share in the long-term project is more than that of the short-term, indicating that the long-term project can be more cost-effective taken overall. 相似文献
16.
《International Journal of Hydrogen Energy》2022,47(83):35293-35319
Interest in hydrogen as an energy carrier is growing as countries look to reduce greenhouse gas (GHG) emissions in hard-to-abate sectors. Previous works have focused on hydrogen production, well-to-wheel analysis of fuel cell vehicles, and vehicle refuelling costs and emissions. These studies use high-level estimates for the hydrogen transportation systems that lack sufficient granularity for techno-economic and GHG emissions analysis. In this work, we assess and compare the unit costs and emission footprints (direct and indirect) of 32 systems for hydrogen transportation. Process-based models were used to examine the transportation of pure hydrogen (hydrogen pipeline and truck transport of gaseous and liquified hydrogen), hydrogen-natural gas blends (pipeline), ammonia (pipeline), and liquid organic hydrogen carriers (pipeline and rail). We used sensitivity and uncertainty analyses to determine the parameters impacting the cost and emission estimates. At 1000 km, the pure hydrogen pipelines have a levelized cost of $0.66/kg H2 and a GHG footprint of 595 gCO2eq/kg H2. At 1000 km, ammonia, liquid organic hydrogen carrier, and truck transport scenarios are more than twice as expensive as pure hydrogen pipeline and hythane, and more than 1.5 times as expensive at 3000 km. The GHG emission footprints of pure hydrogen pipeline transport and ammonia transport are comparable, whereas all other transport systems are more than twice as high. These results may be informative for government agencies developing policies around clean hydrogen internationally. 相似文献
17.
《International Journal of Hydrogen Energy》2020,45(53):28313-28324
Introducing silicotungstic acid as e− carrier, it was found that the yield of H2 can improve 35.31%. Compared to the results without addition of silicotungstic acid, the NH3 production rate and Faradaic Efficiency were increased by 10.5 and 13.3 times, respectively. 相似文献
18.
Riyi Chen Songsheng Zheng Yudong Yao Zhibin Lin Wei Ouyang Lianghui Zhuo Zhaolin Wang 《International Journal of Hydrogen Energy》2021,46(54):27749-27757
While ammonia (NH3) is an attractive alternative to pure hydrogen, its direct use in fuel cells is fraught with difficulties. A direct ammonia fuel cell (DAFC) with PtIr/C (Pt:Ir = 1:1), PtRu/C (Pt:Ru = 1:1), and Pt/C anode electrocatalyst was investigated at 25 °C and 100 kPa inlet gas pressure. Due to the synergistic and electronic effects of the PtIr alloy, their open-circuit voltages (OCVs) were rated as PtIr/C > PtRu/C > Pt/C, with the DAFC with PtIr/C anode achieving the highest OCV of 0.50 V and peak power density (PPD) of maximum 1.68 mW cm?2. Meanwhile, an online Fourier transform infrared (FTIR) spectrometer detected an increase in ammonia permeation in the cathode exhaust gas, indicating a possibility of fuel permeation and cathode electrocatalyst degradation. The degradation of DAFC efficiency with rising cycle numbers may be due to ammonia cross-over and poisoning over the surface of the electrocatalyst. 相似文献
19.
20.
Lena Klaas Dorottya Guban Martin Roeb Christian Sattler 《International Journal of Hydrogen Energy》2021,46(49):25121-25136
Large progress has been made in the last decades to reduce the carbon footprint of ammonia, which is an essential commodity of the food, chemical and energy industry. Apart from alternative routes for green feedstock production, such as hydrogen via electrolysis and nitrogen via solar thermochemical methods, alternatives are explored to replace the Haber-Bosch process. The present article reviews four promising mild condition ammonia production methods: solid state synthesis, molten salt synthesis, thermochemical looping and photocatalytic routes. Contrary to the Haber-Bosch method, which requires high pressures of 200–400 bar, they operate at low-pressures, furthermore such routes open the possibility for direct ammonia production from H2O and N2 without the intermediate hydrogen production step. These advantages allow easier renewable energy integration; however, R&D activities are needed for scaling-up. An analysis is given on renewable energy integration with focus on solar resources both in the form of electricity and heat. 相似文献