首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neodymium nickelate, with composition Nd2NiO4+δ is integrated as oxygen electrode in a solid oxide electrolyte supported cell made of a TZ3Y electrolyte and a Ni-CGO hydrogen electrode. This cell is tested in both fuel cell (SOFC) and electrolysis (SOEC) mode and the reversible operation is proven, ASR values being slightly lower in electrolysis mode. Performances in SOEC mode are compared with a commercial cell based on the same electrolyte and cathode, but with lanthanum strontium manganite (LSM) as anode. For a voltage of 1.3 V, current densities of 0.40, 0.64 and 0.87 A cm−2 are measured at 750, 800 and 850 °C, respectively; they are much higher than the ones measured in the same conditions for the LSM-containing cell. Indeed, for a voltage of 1.3 V, current densities are respectively 1.7, 3 and 4.2 times higher for the Nd2NiO4+δ cell than for the LSM one at 850, 800 and 750 °C, respectively. Consequently, Nd2NiO4+δ can be considered as a good candidate for operating below 800 °C as oxygen electrode for high temperature steam electrolysis.  相似文献   

2.
A promising strontium and cobalt-free ferrite Pr1-xCaxFeO3-δ (PCF, x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) has been synthesized successfully by glycine-nitrate combustion method and used as the air electrode of solid oxide electrolysis cell (SOEC) for steam electrolysis. The crystal structure and electricity conductivity of PCF are investigated in detail. According to the conductivity test, Pr0.6Ca0.4FeO3-δ (PCF64) with higher conductivity is selected as the air electrode to preparing the single cell with structure of PCF64|GDC|SSZ|YSZ-NiO. Under SOFC mode, the maximum power density of the single cell is 462.93 mW cm−2 at 800 °C with hydrogen as fuel. Under SOEC mode, the current density reaches 277.14 mA cm−2 and the corresponding hydrogen production rates is 115.84 mL cm−2 h−1 at 800 °C at 1.3 V. In the 10 h short-term stability test, the cell shows good electrolysis stability.  相似文献   

3.
In this work, double perovskite-type oxide PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF) is synthesized by the conventional wet chemical method and firstly characterized as the oxygen electrode for reversible solid oxide electrochemical cells (RSOCs). The microstructure and electrochemical performance of RSOCs based on this oxygen electrode are investigated. The maximum power density of the cell reaches 986 mW/cm2 at 800 °C and the cell has good stability in short-term test in fuel cell (SOFC) mode. In electrolysis cell (SOEC) mode, it displays an electrolysis current density as high as 1.3 A/cm2 when the temperature, absolute humidity (AH) and applied voltage are 800 °C, 50 vol % and 1.3 V, respectively. The cells also exhibit excellent durability of 120 h in SOEC mode and present good reversibility. The results suggest that the RSOCs based on this oxygen electrode has a very promising prospect.  相似文献   

4.
To promote the application of traditional (La0.8Sr0.2)0.95MnO3-δ-YSZ (LSM-YSZ) oxygen electrodes to both solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) modes at intermediate temperatures, we select PdO as the catalyst and ZrO2 as the PdO stabilizer to decorate the LSM-YSZ. The high active PdO particles enhance the electrocatalytic activity, and stable ZrO2 can hinder the growth and agglomeration of the PdO particles. PdO and ZrO2 are co-impregnated into the LSM-YSZ to form a nano-structured PdO/ZrO2 -LSM-YSZ composite electrode. At 750 °C, the obtained cell attains a power density peak of 1.114 W cm−2 in SOFC mode and shows significant improvement of the cell with LSM-YSZ composite oxygen electrode. As a SOEC, when the water content is 90 vol%AH (absolute humidity) at the hydrogen electrode, the cell exhibits an extraordinary current density of 2.322 A cm−2 under applied voltage of 2.0 V at 750 °C. Moreover, the cell shows notable long-term stability during water electrolysis. Therefore, this study demonstrates that the nano-structured PdO/ZrO2 -LSM-YSZ based material as a high active and stable oxygen electrode can greatly promote the application of LSM-YSZ electrode in reversible solid oxide electrolysis cell (RSOCs) field.  相似文献   

5.
A cermet of silver and gadolinium-doped-ceria (Ag-GDC) is investigated as novel symmetrical electrode material for (ZrO2)0.92(Y2O3)0.08 (YSZ) electrolyte-supported solid oxide cells (SOCs) operated in fuel cell (SOFC) and electrolysis (SOEC) modes. The electrochemical performances are evaluated by measuring the current density-voltage characteristics and impedance spectra of the SOCs. The activity of hydrogen and air electrodes is investigated by recording overpotential versus current density in symmetrical electrode cells, respectively in hydrogen and air, using a three-electrode method. Conventional hydrogen electrode, Ni-YSZ, and oxygen electrode, LSCF (La0.6Sr0.4Co0.2Fe0.8O3-δ)-GDC, are tested as comparison. The results show that, as an oxygen electrode, Ag-GDC is more active than LSCF-GDC in catalyzing both oxygen reduction reaction (ORR) in an SOFC and oxygen evolution reaction (OER) in an SOEC. As a hydrogen electrode, Ag-GDC is more active than Ni-YSZ in catalyzing hydrogen oxidation reaction (HOR) in an SOFC and hydrogen evolution reaction (HER) in an SOEC, especially in high steam concentration. An SOC with symmetrical Ag-GDC electrodes operated in a fuel cell mode, with 3% H2O humidified H2 as the fuel, displays a peak power density of 395 mWcm?2 at 800 °C. Its polarization resistance at open circuit voltage is 0.21 Ω cm2. Ag-GDC electrode can be operated even at pure steam. An SOEC operated for electrolyzing 100% H2O, the current density reaches 720 mA cm?2 under 1.3 V at 800 °C.  相似文献   

6.
Bi-doped La1.5-xBixSr0.5Ni0.5Mn0.5O4+δ (LBSNM-x, x = 0, 0.05, 0.1, 0.15) was investigated as a potential air electrode for solid oxide electrolysis cell (SOEC). The effect of Bi doping on the structure, electrical conductivity, chemical compatibility with GDC electrolyte, electrochemical performance and thermal expansion coefficients (TECs) were investigated. XRD characterization results show that the solid solution content of Bi is less than or equal to 0.1. XPS characterization results indicate that Bi doping increases the oxygen vacancy content of LBSNM-x air electrode and thus greatly benefits its oxygen evolution reaction. Among the Bi-doped samples, LBSNM-0.1 electrode has the best electrochemical performance with its lowest Rp (polarization resistance) of 0.28 Ω cm2 at 800 °C based on LBSNM-0.1/GDC half-cell. LBSNM-0.1 single cell with 70%CO2 + 30%CO fuel gas feed on the fuel electrode has achieved current density of 811 mA cm−2 at 800 °C and 1.4 V, a 62.2% increase relative to that of LSNM single cell. In addition, LBSNM-0.1 single cell exhibits excellent stability at 800 °C and 1.3 V with 70%CO2 + 30%CO feed gas on the fuel electrode. These results prove that Bi-doped LBSNM-0.1 is an efficient air electrode for SOEC.  相似文献   

7.
Reversible solid oxide cells (rSOC) can convert excess electricity to valuable fuels in electrolysis cell mode (SOEC) and reverse the reaction in fuel cell mode (SOFC). In this work, a five – cell rSOC short stack, integrating fuel electrode (Ni-YSZ) supported solid oxide cells (Ni-YSZ || YSZ | CGO || LSC-CGO) with an active area of 100 cm2, is tested for cyclic durability. The fuel electrode gases of H2/N2:50/50 and H2/H2O:20/80 in SOFC and SOEC mode, respectively, are used during the 35 reversible operations. The voltage degradation of the rSOC is 1.64% kh?1 and 0.65% kh?1 in SOFC and SOEC mode, respectively, with fuel and steam utilisation of 52%. The post-cycle steady-state SOEC degradation of 0.74% kh?1 suggests improved lifetime during rSOC conditions. The distribution of relaxation times (DRT) analysis suggests charge transfer through the fuel electrode is responsible for the observed degradation.  相似文献   

8.
Solid oxide electrochemical cell (SOC) is a highly promising alternative for fuel conversion and power-to-gas due to its high efficiency and low emission. However, degradation resulting from the electrolyte-electrode interface is a major challenge in both fuel cell mode and electrolysis mode. Here, a co-sintering tri-layer structure cell with nanocomposite oxygen electrode is developed to mitigate the interface issue. A 10 × 10 cm2 NiO/YSZ||YSZ||YSZ-La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cell has been conducted under different fuels in SOFC mode. A power density output of 558 mW/cm2 @0.7 V-800 °C in wet H2 and a durability of 300 h in simulated syngas have been obtained. The performance of LSF, LSCF and SSC oxygen electrodes have been studied in both SOFC and SOEC modes. It suggests that three oxygen electrodes have an order of SSC > LSCF > LSF in electrochemical performance, and an opposite order in stability of SOEC. The degradation of the LSCF and SSC can be derived from the solid-state reactions at the interface between Co-containing perovskites and YSZ during operation. It demonstrates that GDC and Ag modification can enhance the oxygen electrode stability by impeding the solid-state reactions and the nanoparticles sintering. Results suggest that GDC has a negative effect on the cell performance and Ag has a positive effect, implying that enhancing the electric conductivity of YSZ-LSCF is the key to improve the cell performance. Moreover, cell with YSZ-SFM/GDC has been applied in CH4 assisted SOEC process (CH4-SOEC), in which a significant reduction of electricity consume can be realized.  相似文献   

9.
High performance and excellent durability are essential for the practical application of solid oxide electrolysis cell (SOEC). Here we have demonstrated efficient and durable solid oxide steam electrolysis by constructing active La0.8Sr0.2CoO3-δ/Gd0.2Ce0.8O2-δ (LSC/GDC) heterointerface in air electrode using a simple co-impregnation method. The heterostructured air electrode exhibits the outstanding activity for oxygen evolution reaction, and its exchange current density (557 mA cm?2) is 69 times higher than that of the traditional LSM-YSZ. The resulting cell reaches ?1.86 A cm?2 @1.3 V and ?2.30 A cm?2 @1.5 V at 800 °C and 50% absolute humidity (A.H), and the polarization resistance from the oxygen electrode only is 0.02 Ω cm2. Most importantly, the heterostructured cell presents excellent long-term stability for the 1035 h steam electrolysis operation and excellent durability for 100 times charge-discharge cycles. In the heterostructured air electrode, the problem of electrode delamination is avoided due to the reduced oxygen partial pressure at anode/electrolyte resulting from easy diffusion of O2? at the interphase, and the coarsening of LSC and GDC nanoparticles is limited because of the LSC/GDC percolative interfaces from phase segregation process. This work proposes a simple and effective strategy to design heterointerface for efficient and durable solid oxide steam electrolysis.  相似文献   

10.
Reversible solid oxide cells (RSOCs) are clean and effective electrochemical conversion devices that require highly active electrodes and stable electrochemical performance for the practical application. Herein, we investigate a series of La0.8-xBixSr0.2Ni0.2Fe0.8O3-δ (LBSNF-x, x = 0.0, 0.05, 0.1, 0.15) oxides as the potential oxygen electrode material for RSOCs. The properties of electrical conductivity, thermal expansion coefficient, and chemical compatibility with the Ce0.9Gd0.1O1.95 (GDC) barrier layer of LBSNF-x oxides are evaluated. When LBSNF-0.1 and GDC forms a composite oxygen electrode with the ratio of 7:3, it shows the lowest polarization resistance with fastest oxygen reduction reaction activity in the symmetrical cell test. Then the cell with the configuration of Ni-YSZ/YSZ/GDC/LBSNF-0.1-GDC was prepared and evaluated both in fuel cell (FC) and electrolysis cell (EC) mode. The maximum power density of 824 mW cm−2 is obtained at 800 °C in FC mode, and current density of 1.20 A cm−2 is achieved under 50% steam content at 1.3 V in EC mode. Additionally, the cell exhibits good stability both in FC and EC mode after 80 h test at 700 °C. The results of this work provide a strong support for application of the LBSNF-0.1-GDC oxygen electrode for reversible solid oxide cells.  相似文献   

11.
Reversible solid oxide cells (RSOCs) have attracted increasing attention due to the potential realizing the deep coupling between hydrogen and electricity. An efficient and stable oxygen electrode is needed for developing RSOCs. Herein, we report a nanostructured hybrid with a nominal composition of BaZr0.2Co0.8O3-δ as oxygen electrode. The chemical composition, crystal structure and physicochemical properties of the BaZr0.2Co0.8O3-δ hybrid have been characterized. The results show that the sintered BaCo0.8Zr0.2O3-δ has grown into a hybrid, consisting of cubic perovskite BaZr0.82Co0.18O3-δ, hexagonal perovskite BaCo0.96Zr0.04O2.6+δ and a small quantity of hexagonal perovskite BaCoO3. The cell with BaZr0.2Co0.8O3-δ hybrid oxygen electrode delivers a current density of 2.09 A cm−2 @0.7 V in SOFC mode, and gives −1.43 A cm−2 @1.3 V in SOEC mode for steam electrolysis. The BaCo0.8Zr0.2O3-δ cell shows a smooth transition from SOEC to SOFC, and gives no obvious degradation after 100 times SOEC↔SOFC cycle operation.  相似文献   

12.
La1-xSrxMnO3 is a well-known oxygen electrode for reversible solid oxide cells (RSOCs). However, its poor ionic conductivity limits its performance in redox reaction. In this study, we selected Sm0.5Sr0.5CoO3-δ (SSC) as catalyst and Sm0.2Ce0.8O1.9 (SDC) as ionic conductor and sintering inhibitor to co-modify the La0.65Sr0.35MnO3 (LSM) oxygen electrode through an alternate infiltration method. The infiltration sequence of SSC and SDC showed an influence on the morphology and performance of LSM oxygen electrode, and the influence was gradually weakened with the increasing infiltration time. The polarization resistance of the alternately infiltrated LSM-SSC/SDC electrode was 0.08 Ω cm2 at 800 °C in air, which was 3.36% of the LSM electrode (2.38 Ω cm2). The Ni-YSZ/YSZ/LSM-SSC/SDC single cell attained a maximum power density of 1205 mW cm?2 in SOFC mode at 800 °C, which was 8.73 times more than the cell with LSM electrode. The current density achieved 1620 mA .cm?2 under 1.5 V at 800 °C in SOEC mode and the H2 generation rate was 3.47 times of the LSM oxygen electrode.  相似文献   

13.
Reversible solid oxide cells (RSOCs) are prone to material thermal property mismatching problems between electrodes and electrolyte, which greatly reduces their energy efficiency and causes irreversible performance degradation. One solution is to develop symmetrical RSOCs (SRSOCs) employing identical electrode materials to effectively address thermal property mismatching related issues and also simplify the manufacturing process. Herein, La1-xSrxFeO3-δ (x = 0–0.20) perovskites are developed and applied as both fuel and air electrode materials for SRSOCs for the first time. The impact of Sr substitution for La on the crystal structures, conductivities and electrochemical performance of LaFeO3 oxides is systematically investigated. It is found, after doping with Sr, overall properties of the LaFeO3 oxides show an obvious improvement, especially for the sample of La0·9Sr0·1FeO3-δ (LSF9010). The peak power density of SRSOCs featuring LSF9010 can stand at 0.575 W cm−2 at 800 °C under the solid oxide fuel cell (SOFC) working model. Under solid oxide electrolysis cell (SOEC) model, the current density stands at 0.84 A cm−2 at 800 °C and 1.5 V. More importantly, the La0·9Sr0·1FeO3-δ symmetrical cell can operate steadily for 128 h under SOFC mode and 25 h under SOFC-SOEC cycle mode, respectively, with almost no performance degradation found. The outcomes of the current study show that the developed LSF9010 may be used as an outstanding multifunctional electrode material in SRSOCs.  相似文献   

14.
Direct CO2 electrolysis has been explored as a means to store renewable energy and produce renewable fuels. La chromate-based perovskite oxides have attracted great attention as fuel electrode materials for solid oxide electrolyzer cells. However, the electrochemical catalytic activity of such oxides is relatively low, and their stability has not been confirmed. In this study, Pr is doped into La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) and the applicability of the resulting fuel electrode to direct CO2 electrolysis is investigated. The polarization resistance of the resulting electrode at 800 °C is decreased by 25%. Distribution function of relaxation times analysis indicates that the observed improvements may be attributed to increased oxygen ion conductivity. A full cell of Pr-doped LSCM-gadolinium-doped ceria (GDC)|scandia-stabilized zirconia|La0.6Sr0.4Co0.2Fe0.8O3-δ-GDC achieves an electrolysis current of 0.5 A cm−2 at 1.36 V and a Faradaic efficiency close to 100%. Short-term (210 h) stability testing of the cell under an electrolysis current of 0.5 A cm−2 at 800 °C with pure CO2 as the feedstock reveals a decrease in applied voltage at a rate of 7 mV kh−1, thereby indicating excellent stability. Thus, given its satisfactory performance and stability, the Pr-doped LSCM electrode may be considered a promising candidate material for direct CO2 electrolysis.  相似文献   

15.
Solid oxide electrolysis cell (SOEC) can perform CO2 electrolysis to produce CO feedstock. In this work, we show Sr2Fe1.5+xMo0.5O6-δ with exsolved Fe nanoparticles to enhance the activity to CO2 electrolysis. A single SOEC with a configuration of SF1.5+xM-SDC/LSGM/LSM-SDC shows a current density of 1.16 A cm−2 at 1.8 V, which presents the CO production rate of 6.85 mL min−1 cm−2 and the current efficiency of up to 96.3% at 850 °C. We further demonstrate a stable electrolysis performance without obvious degradation being observed even after a long-time operation of 100 h. The exsolved metal-oxide interfaces function as three phase boundary which transports gas molecules, oxygen ions and electrons and therefore accommodate CO2 splitting in electrochemical process.  相似文献   

16.
Effect of Gd0.2Ce0.8O1.9 (GDC) infiltration on the performance and stability of La0.8Sr0.2MnO3 (LSM) oxygen electrodes on Y2O3-stabilized ZrO2 (YSZ) electrolyte has been studied in detail under solid oxide electrolysis cell (SOEC) operating conditions at 800 °C. The incorporation of GDC nanoparticles significantly enhances the electrocatalytic activity for oxygen oxidation reaction on LSM electrodes. Electrode polarization resistance of pristine LSM electrode is 8.2 Ω cm2 at 800 °C and decreases to 0.39 and 0.09 Ω cm2 after the infiltration of 0.5 and 1.5 mg cm−2 GDC, respectively. The stability of LSM oxygen electrodes under the SOEC operating conditions is also significantly increased by the GDC infiltration. A 2.0 mg cm−2 GDC infiltrated LSM electrode shows an excellent stability under the anodic current passage at 500 mA cm−2 and 800 °C for 100 h. The infiltrated GDC nanoparticles effectively shift the reaction sites from the LSM electrode/YSZ electrolyte interface to the LSM grains/GDC nanoparticle interface in the bulk of the electrode, effectively mitigating the delamination at the LSM/YSZ interface. The results demonstrate that the GDC infiltration is an effective approach to enhance the structural integrity and thus to achieve the high activity and excellent stability of LSM-based oxygen electrode under the SOEC operating conditions.  相似文献   

17.
Sr-doped LaMnO3 and Yttria stabilized zirconia (LSM–YSZ) composite powder is synthesized by the preparation of LSM on submicron-sized YSZ particles using an in-situ glycin–nitrate combustion method for solid oxide electrolysis cells (SOEC) in this paper. LSM–YSZ composite powder and the relevant LSM powder are characterized by XRD and FESEM. The results show that LSM–YSZ is net-porous composite powder while YSZ and LSM do not react with each other during synthesis process. The electrochemical test of the single button cells indicates that the in-situ LSM–YSZ powder shows better electrolysis performance and lower discharging capability than traditionally direct mixture LSM and YSZ oxygen electrode. When operating in SOEC mode with constant current electrolysis at a current density of 0.33 A cm−2 and 900 °C, the electrolytic voltage decreases from 1.21 V to 1.02 V, which indicates that LSM–YSZ electrode has an activation process at the initial testing stage. A mechanism which involves the incorporation of SrO segregated on the surface into the LSM lattice and the generation of oxygen vacancies in the LSM electrode is proposed for the activation process with O2− oxidation on LSM electrodes.  相似文献   

18.
Steam electrolysis (H2O → H2 + 0.5O2) was investigated in solid oxide electrolysis cells (SOECs). The electrochemical performance of GDC-impregnated Ni-YSZ and 0.5% wt Rh-GDC-impregnated Ni-YSZ was compared to a composite Ni-YSZ and Ni-GDC electrode using a three-electrode set-up. The electrocatalytic activity in electrolysis mode of the Ni-YSZ electrode was enhanced by GDC impregnation. The Rh-GDC-impregnated Ni-YSZ exhibited significantly improved performance, and the electrode exhibited comparable performance between the SOEC and SOFC modes, close to the performance of the composite Ni-GDC electrode. The performance and durability of a single cell GDC-impregnated Ni-YSZ/YSZ/LSM-YSZ with an H2 electrode support were investigated. The cell performance increased with increasing temperature (700 °C-800 °C) and exhibited comparable performance with variation of the steam-to-hydrogen ratio (50/50 to 90/10). The durability in the electrolysis mode of the Ni-YSZ/YSZ/LSM-YSZ cell was also significantly improved by the GDC impregnation (200 h, 0.1 A/cm2, 800 °C, H2O/H2 = 70/30).  相似文献   

19.
The steam electrolysis performance of an intermediate-temperature solid oxide electrolysis cell (SOEC) was measured at 650 °C at various steam concentrations. The cell voltage decreased with increasing steam concentration, which was attributed to a decrease in the steam electrode polarization. The highest performance of the SOEC was 1.32 V at 0.57 A cm−2. On the basis of the electrolytic characteristics of this cell, the efficiency of a hydrogen production system operating at a capacity of 300 N m3 h−1 was estimated. The system efficiency reached a higher heating value (HHV standard) of 98% due to the effective recovery of thermal energy from exhaust gas.  相似文献   

20.
The oxygen electrode-supported reversible solid oxide cell (RSOC) has demonstrated distinguishing advantages of fuel flexibility, shorter gas diffusion path and more choices for fuel electrode materials. However, there are serious drawbacks including the difficulty of co-firing the oxygen electrode and electrolyte, and the inefficient electrochemical performance. In this study, a (La0.8Sr0.2)0.95MnO3-δ (LSM) supported RSOC with the configuration of La0.6Sr0.4Fe0.9Sc0.1O3-δ (LSFSc)-YSZ/YSZ/CuNi–CeO2-YSZ is fabricated by tape casting, co-sintering and impregnation technologies. The single cell is evaluated at both fuel cell (FC) and electrolysis cell (EC) mode. Significant maximum power density of 436.0 and 377 mW cm?2 is obtained at 750 °C in H2 and CH4 fuel atmospheres, respectively. At electrolysis voltage of 1.3 V and 50% steam content, current density of ?0.718, ?0.397, ?0.198 and ?0.081 A cm?2 is obtained at 750, 700, 650 and 600 °C respectively. Much higher electrolysis performance than FC mode is exhibited probably due to the optimized electrodes with increased triple phase boundary (TPB) area and faster gas diffusion (oxygen and steam) and electrochemical reactions for water splitting. Additionally, the short-term stability of single cell in H2 and CH4 are also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号