首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice straw is a potential energy source for power generation. Here, a biomass-based combined heat and power plant integrating a downdraft gasifier, a solid oxide fuel cell, a micro gas turbine and an organic Rankine cycle is investigated. Energy, exergy, and economic analyses and multi-objective optimization of the proposed system are performed. A parametric analysis is carried out to understand the effects on system performance and cost of varying key parameters: current density, fuel utilization factor, operating pressure, pinch point temperature, recuperator effectiveness and compressors isentropic efficiency. The results show that current density plays the most important role in achieving a tradeoff between system exergy efficiency and cost rate. Also, it is observed that the highest exergy destruction occurs in the gasifier, so improving the performance of this component can considerably reduce the system irreversibility. At the optimum point, the system generates 329 kW of electricity and 56 kW of heating with an exergy efficiency of 35.1% and a cost rate of 10.2 $/h. The capability of this system for using Iran rice straw produced in one year is evaluated as a case study, and it is shown that the proposed system can generate 6660 GWh electrical energy and 1140 GWh thermal energy.  相似文献   

2.
Since the efficiency of fuel cells is the ratio of the electrical power output and the fuel input, it is a function of power density, system pressure, and stoichiometric ratios of hydrogen and oxygen. Typically, the fuel cell efficiency decreases as its power output increases. In order for the fuel cell system to obtain highly efficient operation with the same power generation, more cells and other auxiliaries such as a high-capacity compressor system, etc. are required. In other words, fuel cell efficiency is closely related to fuel cell economics. Therefore, an optimum efficiency should exist and should result in the definition of a cost-effective fuel cell system. Using a multi-objective optimization technique, the sequential quadratic programming (SQP) method, the efficiency and cost of a fuel cell system have been optimized under various operating conditions. This paper has obtained some analytical results that provide a useful suggestion for the design of a cost-effective fuel cell system with high operation efficiency.  相似文献   

3.
The study aims to optimize the geothermal and solar-assisted sustainable energy and hydrogen production system by considering the genetic algorithm. The study will be useful by integrating hydrogen as an energy storage unit to bring sustainability to smart grid systems. Using the Artificial Neural Network (ANN) based Genetic Algorithm (GA) optimization technique in the study will ensure that the system is constantly studied in the most suitable under different climatic and operating conditions, including unit product cost and the plant's power output. The water temperature of the Afyon Geothermal Power Plant varies between 70 and 130 °C, and its mass flow rate varies between 70 and 150 kg/s. In addition, the solar radiation varies between 300 and 1000 W/m2 for different periods. The net power generated from the region's geothermal and solar energy-supported system is calculated as 2900 kW. If all of this produced power is used for hydrogen production in the electrolysis unit, 0.0185 kg/s hydrogen can be produced. The results indicated that the overall energy and exergy efficiencies of the integrated system are 4.97% and 16.0%, respectively. The cost of electricity generated in the combined geothermal and solar power plant is 0.027 $/kWh if the electricity is directly supplied to the grid and used. The optimized cost of hydrogen produced using the electricity produced in geothermal and solar power plants in the electrolysis unit is calculated as 1.576 $/kg H2. The optimized unit cost of electricity produced due to hydrogen in the fuel cell is calculated as 0.091 $/kWh.  相似文献   

4.
In this study, a new solar and geothermal based integrated system is developed for multigeneration of electricity, fresh water, hydrogen and cooling. The system also entails a solar integrated ammonia fuel cell subsystem. Furthermore, a reverse osmosis desalination system is used for fresh water production and a proton exchange membrane based hydrogen production system is employed. Moreover, an absorption cooling system is utilized for district cooling via available system waste heat. The system designed is assessed thermodynamically through approaches of energy and exergy analyses. The overall energy efficiency is determined to be 42.3%. Also, the overall exergy efficiency is assessed, and it is found to be 21.3%. The exergy destruction rates in system components are also analysed and the absorption cooling system generator as well as geothermal flash chamber are found to have comparatively higher exergy destruction rates of 2370.2 kW and 643.3 kW, respectively. In addition, the effects of varying system parameters on the system performance are studied through a parametric analyses of the overall system and associated subsystems.  相似文献   

5.
The present paper deals with the hydrogen liquefaction with absorption precooling cycle assisted by geothermal water is modeled and analyzed. Uses geothermal heat in an absorption refrigeration process to precool the hydrogen gas is liquefied in a liquefaction cycle. High-temperature geothermal water using the absorption refrigeration cycle is used to decrease electricity work consumption in the gas liquefaction cycle. The thermoeconomic optimization procedure is applied using the genetic algorithm method to the hydrogen liquefaction system. The objective is to minimize the unit cost of hydrogen liquefaction of the composed system. Based on optimization calculations, hydrogen gas can be cooled down to ?30 °C in the precooling cycle. This allows the exergetic cost of hydrogen gas to be reduced to be 20.16 $/GJ (2.42 $/kg LH2). The optimized exergetic cost of liquefied hydrogen is 4.905 $/GJ (1.349 $/kg LH2), respectively.  相似文献   

6.
PEM fuel cell is an electrochemical system that converts the chemical energy of hydrogen directly into electricity and is widely used as an energy source for ground vehicle applications. This paper aims to analyze the technical aspects of integrated biomass gasification and PEM fuel cell systems for electricity production which is focused on gasifier operating conditions and their effect on the cell voltage. To evaluate the effect of gasifier operating conditions (gasification temperature, steam/biomass ratio, equivalence ratio, and biomass particle size) on cell voltage, an experimental work has also been carried. The results show that for all catalysts, the cell voltage increased rapidly as the reaction temperature increased from 500 °C to 650 °C, then tended to a slow growth due to the increase of reaction rates, enabling the fast decomposition of biomass into clean syngas (H2 and CO), especially at the initial stage of reaction.  相似文献   

7.
This study represents the results of the analysis and optimization of an integrated system for cogenerating electricity and freshwater. This setup consists of a Solid Oxide Fuel cell (SOFC) for producing electricity. Unburned fuel of the SOFC is burned in the afterburner to increase the temperature of the SOFC's outlet gasses and operate a Gas turbine (GT) to produce additional power and operate the air compressor. At the bottom of this cycle, a combined setup of a Multi-Effect Desalination (MED) and Reverse Osmosis (RO) is considered to produce freshwater from the unused heat capacity of the GT's exhaust gasses. Also, a Stirling engine is used in the fuel supply line to increase the fuel's temperature. Using LNG and the Stirling engine will replace the fuel compressor with a pump which increases the system performance and eliminates the need for the expansion valve. To study the system performance a mathematical model is developed in Engineering Equation Solver (EES) program. Then, the system's simulated data from the EES has been sent to MATLAB to promote the best operating condition based on the optimization criteria. An energetic, exergetic, economic, and environmental analysis has been performed and a Non-dominated Sorting Genetic Algorithm (NSGA-II) is used to achieve the goal. The two-objective optimization is performed to maximize the exergetic efficiency of the proposed system while minimizing the system's total cost of production. This cost is a weighted distribution of the Levelized Cost of Electricity (LCOE) and Levelized Cost of freshwater (LCOW). The results showed that the exergetic and energetic efficiencies of the system can reach 73.5% and 69.06% at the optimum point. The total electricity production of the system is 99 MW. The production cost is 11.71 Cents/kWh, of which 1.04 Cents/kWh is emission-related and environmental taxes. The freshwater production rate is 42.44 kg/s which costs 4.38 USD/m3.  相似文献   

8.
In this paper, thermodynamic analysis is carried out for a geothermal Kalina cycle employed in Husavic power plant. Afterwards, the optimum operating conditions in which the cycle is at its best performance are calculated. In order to reach the optimum thermal and exergy efficiencies of the cycle, Artificial Bee Colony (ABC) algorithm, a new powerful multi-objective and multi-modal optimization algorithm, is conducted. Regarding the mechanism of ABC algorithm, convergence speed and precision of solutions have been remarkably improved when compared to those of GA, PSO and DE algorithms. Such a relative improvement is indicated by a limit parameter and declining probability of premature convergence. In this research, exergy efficiency including chemical and physical exergies and thermal efficiency are chosen as the objective functions of ABC algorithm where optimum values of the efficiencies for the Kalina cycle are found to be 48.18 and 20.36%, respectively, while the empirical thermal efficiency of the cycle is about 14%. At the optimum thermal and exergy efficiencies, total exergy destruction rates are respectively 4.17 and 3.48 MW. Finally, effects of the separator inlet pressure, temperature, basic ammonia mass fraction and mass flow rate on the first and second law efficiencies are investigated.  相似文献   

9.
The present study considers a thermodynamic analysis and performance optimization of geothermal power cycles. The proposed binary‐cycles operate with moderately low temperature and liquid‐dominated geothermal resources in the range of 110°C to 160°C, and cooling air at ambient conditions of 25°C and 101.3 kPa reference temperature and atmospheric pressure, respectively. A thermodynamic optimization process and an irreversibility analysis were performed to maximize the power output while minimizing the overall exergy destruction and improving the First‐law and Second‐law efficiencies of the cycle. Maximum net power output was observed to increase exponentially with the geothermal resource temperature to yield 16–49 kW per unit mass flow rate of the geothermal fluid for the non‐regenerative organic Rankine cycles (ORCs), as compared with 8–34 kW for the regenerative cycles. The cycle First‐law efficiency was determined in the range of 8–15% for the investigated geothermal binary power cycles. Maximum Second‐law efficiency of approximately 56% was achieved by the ORC with an internal heat exchanger. In addition, a performance analysis of selected pure organic fluids such as R123, R152a, isobutane and n‐pentane, with boiling points in the range of ?24°C to 36°C, was conducted under saturation temperature and subcritical pressure operating conditions of the turbine. Organic fluids with higher boiling point temperature, such as n‐pentane, were recommended for non‐regenerative cycles. The regenerative ORCs, however, require organic fluids with lower vapour specific heat capacity (i.e. isobutane) for an optimal operation of the binary‐cycle. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, analyses of the thermodynamic performance and life cycle cost of a geothermal energy-assisted hydrogen liquefaction system were performed in a computer environment. Geothermal water at a temperature of 200 °C and a flow rate of 100 kg/s was used to produce electricity. The produced electricity was used as a work input to liquefy the hydrogen in the advanced liquefaction cycle. The net work requirement for the liquefaction cycle was calculated as 8.6 kWh/kg LH2. The geothermal power plant was considered as the work input in the liquefaction cycle. The hydrogen could be liquefied at a mass flow rate of 0.2334 kg/s as the produced electricity was used directly to produce liquid hydrogen in the liquefaction cycle. The unit costs of electricity and liquefied hydrogen were calculated as 0.012 $/kWh and 1.44 $/kg LH2. As a result of the life cycle cost analysis of the system, the net present value (NPV) and levelized annual cost (LAC) were calculated as 123,100,000 and 14,450,000 $/yr. The simple payback period (Nspp) and discount payback period (Ndpp) of the system were calculated as 2.9 and 3.6 years, respectively.  相似文献   

11.
Based on the model of a typical alkaline fuel cell (AFC) with circulating potassium hydroxide (KOH) solution as electrolyte and oxygen as oxidant and the experimental data available in the current literature, thermodynamic-electrochemical analyses on the performance of the AFC are carried out, in which multi-irreversibilities such as charger-transfer, concentration and ohmic overpotentials are taken into account. Expressions for the power output and efficiency of the AFC are derived, from which the general performance characteristics of the AFC are discussed in detail. It is found that the power output and efficiency of the AFC first increase and then decrease as the electrolyte concentration is increased, and consequently, there exist the optimal electrolyte concentrations for different temperatures. It is also found that the power output is not a monotonic function of the electric current density while the efficiency is a monotonically decreasing function of the electric current density. According to the performance characteristic curves of the AFC, the optimal operation regions of some main parameters are determined. Moreover, a new multi-objective function is used to further optimize the characteristics of the AFC. Some significant results for the optimal design and operation of practical AFCs are obtained.  相似文献   

12.
In this article, thermodynamic modeling of a cogeneration system consisting of a series two-stage organic Rankine cycle (STORC) and a proton exchange membrane (PEM) fuel cell is conducted. The fuel cell dissipated heat is utilized as STORC plant input. In order to gain a higher efficiency for the proposed cogeneration system, the condenser of the organic Rankin cycle is replaced by a thermoelectric generator (TEG) to minimize heat loss. Moreover, zeotropic mixtures have been employed due to their lower irreversibility compared to single working fluid. Simulation code is developed in MATLAB software linked with the REFPROP software to extract the thermodynamic properties. This simulation code calculates the exergy efficiency and system's total cost rate. Since the performance of the system is affected by the working fluid, three zeotropic mixtures are compared with R123. The parametric study shows that high pressure (HP) and low pressure (LP) evaporator temperature, current density, and PEM operating pressure significantly affect the total cost rate and the second law efficiency. The results indicate that Ipentane-cis Butane has better efficiency among the selected zeotropic mixtures. Furthermore, the genetic algorithm multi-objective optimization is applied to determine the optimal design parameters of the system in a scatter distribution schematic. Finally, the normalized Pareto frontier of Ipentane-cis Butane is given and the related best point of working as a higher exergy efficiency and lower cost rate are specified. Eventually, it is concluded that the integration of STORC with primary PEM fuel cell improves overall exergy efficiency by 1.9%. The total cost rate for optimum point can be in a range of 1.36–14.94 ($/h), depending on the hydrogen production process.  相似文献   

13.
The model of a new molten carbonate fuel cell (MCFC) system is established, in which multi-irreversibilities resulting from the anode, cathode, and ohm overpotentials are taken into account. Based on thermodynamic-electrochemical analysis and the semi-empirical equations available in literature, expressions of some main parameters such as the cell voltage, power output, efficiency and entropy production rate are derived. The influence of the gas inlet compositions on the electrode overpotentials is discussed in detail. It is found that there exist the optimal anode CO2 concentrations for different anode H2 concentrations. The performance characteristic curves of the MCFC system are represented through numerical calculation and the optimal operation regions of the main parameters are determined. Moreover, a new multi-objective function is used to further optimize the characteristics of the MCFC system, and consequently, the important problem of how to give consideration to both the efficiency and power output in the optimal operation region of the system is expounded.  相似文献   

14.
This paper illustrates a methodology developed to facilitate the analysis of complex systems characterized by a large number of technical, economical and environmental parameters. Thermo-economic modeling of a natural gas combined cycle including CO2 separation options has been coupled within a multi-objective evolutionary algorithm to characterize the economic and environmental performances of such complex systems within various contexts.

The method has been applied to a case of power generation in Germany. The optimum options for system integration under different boundary conditions are revealed by the Pareto Optimal Frontiers. Results show the influence of the configuration and technical parameters on the electrical efficiencies of the Pareto optimal plants and their sub-systems. The results provide information on the relationship between power generation cost and CO2 emissions, and allow sensitivity analyses of important economical parameters like natural gas and electricity prices. Such a tool is of interest for power generation technology suppliers, for utility owners or for project investors, and for policy makers in the context of CO2 mitigation schemes including emission trading.  相似文献   


15.
A computational fluid dynamics 3D modeling of a planar miniature proton exchange membrane fuel cell (PEMFC) is presented to optimize the current collector shape and dimensions in order to obtain the best electrochemical performances. Three geometries of current collector have been investigated and compared: serpentine, parallel and square openings. We showed that the current collector geometries giving the greatest performance (highest current and power density) appear to be the serpentine and parallel openings permitting a better distribution of the reactant to the catalyst layers. Influences of the ribs and openings current collectors dimensions of the serpentine design are analyzed. We found that the best electrochemical performances of the cell are reached for the tradeoff between ohmic loss and overvoltages. The important role of activation potential and ohmic potential to find this tradeoff is also introduced for the first time and demonstrated. Finally, we calculated that the power density supplied by the PEMFC stack can be increased by 55% by replacing the 1 μm thick continuous current collector (80 mW/cm2) by an optimized serpentine current collector design (124 mW/cm2), while keeping the same current collector thickness.  相似文献   

16.
17.
建立了质子交换膜燃料电池(PEMFC)堆的热力学分析模型,研究了运行温度、气体分压和阳极流量等工作参数对燃料电池堆能量效率和火用效率的影响。结果表明:对气体加压,能提高热力学能效率和火用效率;温度升高时,系统性能无明显变化;阳极流量增加时,系统的热力学能效率和火用效率有所降低。  相似文献   

18.
A 100 kWe hybrid plant consisting of gasification system, solid oxide fuel cells and organic Rankine cycle is presented. The nominal power is selected based on cultivation area requirement. For the considered output a land of around 0.5 km2 needs to be utilized. Woodchips are introduced into a fixed bed gasification plant to produce syngas which fuels the combined solid oxide fuel cells – organic Rankine cycle system to produce electricity. More than a hundred fluids are considered as possible alternative for the organic cycle using non-ideal equations of state (or state-of-the-art equations of state). A genetic algorithm is employed to select the optimal working fluid and the maximum pressure for the bottoming cycle. Thermodynamic and physical properties, environmental impacts and hazard specifications are also considered in the screening process. The results suggest that efficiencies in the region of 54–56% can be achieved. The highest thermal efficiency (56.4%) is achieved with propylcyclohexane at 15.9 bar. A comparison with the available and future technologies for biomass to electricity conversion is carried out. It is shown that the proposed system presents twice the thermal efficiency achieved by simple and double stage organic Rankine cycle plants and around the same efficiency of a combined gasification, solid oxide fuel cells and micro gas turbine plant.  相似文献   

19.
This research presents estimates of potential regional electric market shares for geothermally produced electricity in the Rocky Mountain Basin and Range Region of the western United States. A model is described which simulates the exploration for and the discovery and harnessing of electric grade geothermal energy resources during the period 1986–1995. Concurrently, electricity demand forecasts are prepared for the same period using a set of estimated electricity demand models. The two forecasts are then integrated to calculate regional electric market shares for a set of alternate electricity price futures.  相似文献   

20.
In this paper, a biogas fuelled energy system for combined production of electricity and hydrogen is considered. The system is based on a molten carbonate fuel cell stack integrated with a micro gas turbine. Hydrogen is produced by a pressure swing absorption system. A multi-objective optimization is performed, considering the electrical efficiency and the unit cost of electricity as the objective functions.The system operation is affected by variations in fuel composition, ambient temperature and performance degradation of the components occurring during its lifetime. These effects are considered while defining the objective functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号