共查询到20条相似文献,搜索用时 15 毫秒
1.
机器学习解决工业检查的问题,例如巧克力形状的分类,主要是通过将实例编码成特征向量和学习获得决策树。本文讨论将机器学习理论应用于糖果形状的检测,对糖果形状的建模采用特征向量法,通过决策树和k最近邻算法实现糖果形状的判定。 相似文献
2.
采用支持向量机(SVM)、随机森林(RF)和逻辑回归(LR)等机器学习方法对脑卒中患者进行分类研究,构建脑卒中疾病预测模型,以期为疾病发生提供早期预警.对kaggle网站下载healthcare-dataset-stroke-data的数据通过SMOTE智能过抽样算法构建均衡数据集,运用支持向量机、随机森林和逻辑回归算法构建脑卒中预测模型.将SMOTE算法优化前后的预测结果进行比较分析,并采用支持向量机、随机森林和逻辑回归算法对优化后的数据集构建疾病预测模型,其结果的准确率、精确度、召回率和ROC值都有明显提高.仿真实验结果可知SMOTE+随机森林算法预测模型的准确率、精确度、ROC值都优于支持向量机和逻辑回归预测模型,可用于脑卒中疾病的早期预测,为医疗手段干预赢得时间,对降低脑卒中的发病具有重要意义. 相似文献
3.
支持向量回归是支持向量机用于回归中的情况,首先介绍基于支持向量机的线性回归和非线性回归的基本原理,然后提出一种时间序列预测方法和误差评价的方法,最后在matlab中模拟简化同步的异常情况,通过实时采集的数据与多步预测值的残差来判断电机的异常,实验表明利用支持向量机回归能及时跟踪输出数据的变化,对设备进行在线故障检测是非常有效的。 相似文献
4.
支持向量回归机问题的研究远没有像支持向量机问题成熟完善,支持向量回归机对函数拟合(回归逼近)具有重要的理论和应用意义.借鉴分类问题的有效算法,将其推广到回归问题中来,针对Lagrange支持向量机(LSVM)算法,提出了有效的Lagrange支持向量回归机(LSVR)算法,在若干不同维数的数据集上,对LSVR算法、ASVR算法和LibSVM算法进行数值试验,并进行比较分析.数值试验表明LSVR算法是有效的,与当前流行的求解支持向量回归机的算法相比,在时间和正确度上都有一定的优势. 相似文献
5.
6.
提出了一种新的基于分类的SVM非线性回归算法(CSVR),首先将Y扩展为Y+ε和Y-ε两个数据集,再将n维输入空间X中的数据连同Y+ε和Y-ε组成n+1维空间χ中的两类数据,并用Z∈(+1,-1)来标识两类数据,再利用标准的SVM二分类算法求解。利用该算法对一系列的基准函数进行测试,取得了令人满意的结果。该算法对噪声数据不敏感,具有较好的鲁棒性,并且可以根据实际需要设定ε的大小,防止出现过拟合现象。该算法由于不需要先验地建立一个参数未知的回归模型,因此可以用在其他传统统计回归算法失效的场合。 相似文献
7.
对用于回归估计的标准SVR算法加以改进,提出了回归型支持向量机的一种改进算法。并针对医学上胆固醇含量测定问题进行了回归估计。实验表明,该算法在运算速度和回归估计精度的稳定性上都明显优于标准算法,特别适于解决大规模样本问题。 相似文献
8.
SVM在许多领域的分类和回归方面起了越来越重要的作用,显示了它的优势。由于SVM方法较好的理论基础和它在一些领域的应用中表现出来的与众不同的优秀的泛化性能,近年来,许多关于SVM方法的应用研究陆续提了出来。围绕支持向量机在分类和回归中的问题进行了阐述,使我国在这一领域的研究和应用能够尽快赶上国际先进水平具有十分重要的意义。 相似文献
9.
基于连续过松弛方法的支持向量回归算法 总被引:5,自引:0,他引:5
支持向量回归(support vector regression,简称SVR)训练算法需要解决在大规模样本条件下的凸二次规划(quadratic programming,简称QP)问题.尽管此种优化算法的机理已经有了较为明确的认识,但已有的支持向量回归训练算法仍较为复杂且收敛速度较慢.为解决这些问题.首先采用扩展方法使SVR与支撑向量机分类(SVC)具有相似的数学形式,并在此基础上针对大规模样本回归问题提出一种用于SVR的简化SOR(successive overrelaxation)算法.实验表明,这种新的回归训练方法在数据量较大时,相对其他训练方法有较快的收敛速度,特别适于在大规模样本条件下的回归训练算法设计. 相似文献
10.
11.
拉格朗日支持向量回归的有限牛顿算法 总被引:1,自引:0,他引:1
拉格朗日支持向量回归是一种有效的快速回归算法,求解时需要对维数等于样本数加一的矩阵求逆,求解需要较多的迭代次数才能收敛。采用一种Armijo步长有限牛顿迭代算法求解拉格朗日支持向量回归的优化问题,只需有限次求解一组线性等式而不需要求解二次规划问题,该方法具有全局收敛和有限步终止的性质。在多个标准数据集上的实验验证了所提算法的有效性和快速性。 相似文献
12.
机器学习中的核覆盖算法 总被引:16,自引:1,他引:16
基于统计学习理论的支持向量机(SVM)方法在样本空间或特征空间构造最优分类超平面解决了分类器的构造问题,但其本质是二分类的,且核函数中的参数难以确定,计算复杂性高.构造性学习算法根据训练样本构造性地设计分类网络,运行效率高,便于处理多分类问题,但存在所得的分界面零乱、测试计算量大的缺点.该文将SVM中的核函数法与构造性学习的覆盖算法相融合,给出一种新的核覆盖算法.新算法克服了以上两种模型的缺点,具有运算速度快、精度高、鲁棒性强的优点.其次.文中给出风险误差上界与覆盖个数的关系.最后给出实验模 相似文献
13.
《计算机应用与软件》2017,(9)
随着市场竞争日益激烈和信息化技术不断发展,通过数据分析和挖掘来预测新的潜在商机成为了企业商机管理的重要环节。现有机器学习算法主要基于样本数目趋于无限大的假设,但实际问题中样本大多是有限的,甚至是小样本数据,难以保证机器学习结果的合理性。将支持向量回归(SVR)算法用于商机预测建模过程,用于解决小样本、高维数、非线性的学习问题。实验结果表明,与决策树等算法构造的目标函数求解结果相比较,SVR算法在有限样本空间能获得较高精度的预测结果。 相似文献
14.
为实现药物专利的自动分类,本文结合药物专利的特点,研究了机器学习算法如何应用于药物专利分类。将2000余份药物专利按疗效分类,选取其中五类作为训练样本,对每一类提取特征文本,利用向量空间模型将非结构化的文本数字化,用支持向量机、Naive Bayes、RBFNetwork三种机器学习算法,分别测试专利样本的分类,使用5重交叉验证比较了三种算法的查准率(precision)和召回率(recall),结果表明支持向量机的分类效果最好。将机器学习算法应用于药物化学专利分类,有助于提高药物化学专利信息检索的效率。 相似文献
15.
生存时间预测在医学、经济和工程等领域有着广泛的应用。随着机器学习技术和数据挖掘技术的发展和广泛应用,研究人员提出了很多基于机器学习技术的生存时间预测算法。这些算法虽然都取得了良好的效果,但预测精度均有提升的空间。因此,提出了一种基于二次学习风范的生存时间预测算法,并结合最近邻算法在截尾样本估计上的应用以及支持向量机在泛化性能上的优势,实现了对临床生存时间的建模。实验结果表明,该算法能够获取精确的生存时间,且具有预测精度上的性能优势。 相似文献
16.
对于大数据而言,机器学习技术是不可或缺的;对于机器学习而言,大规模的数据可以提升模型的精准度。然而复杂的机器学习算法从时间和性能上都急需分布式内存计算这种关键技术。Spark分布式内存计算可以实现算法的并行操作,有利于机器学习算法处理大数据集。因此本文提出在Spark分布式内存环境下实现非线性机器学习算法,其中包括多层可变神经网络、BPPGD SVM、K-means,并在实现的基础上进行数据压缩、数据偏向抽样或者数据加载等方面的优化。为了实现充分配置资源批量运行脚本,本文也实现SparkML调度框架来调度以上优化算法。实验结果表明,优化后的3种算法平均误差降低了40%,平均时间缩短了90%。 相似文献
17.
周德强 《计算机应用与软件》2008,25(9)
通过分析平分最近点算法的性质,利用核技巧,构造了基于核方法的平分最近点算法.证明了该算法构造的决策函数仅依赖于选择的核函数.实现了平分最近点算法与核方法相结合,求解非线性分类问题. 相似文献
18.
基于相关向量机的机器学习算法研究与应用 总被引:4,自引:0,他引:4
介绍一种新的机器学习方法——相关向量机(Relevance Vector Machine)。相关向量机是一种新的基于贝叶斯统计学习理论的学习方法,与支持向量机(Support Vector Machine)的相比,可以有概率型输出、更稀疏和核函数选择更自由等优点。详细论述相关向量机的研究现况、理论基础及算法思想,并通过仿真实验说明该方法曲有效性,最后展望相关向量机的研究发展趋势,且提出相关向量机中仍需解决的关键问题。 相似文献
19.
支持向量机与K近邻结合的网页分类方法 总被引:1,自引:0,他引:1
在网页自动分类优化数据管理的研究,网页分类技术是数据挖掘研究中的一个热点领域,针对当前网页分类方法的精度低、速度慢等难题,为提高网页分类准确率,提出一种将支持向量机和最近邻相结合的网页分类方法(KNN-SVM).KNN-SVM在分类阶段计算待识别样本和最优分类超平面的距离,如果距离差大于给定阈值直接应用支持向量机分类,否则代入以每类的所有的支持向量作为代表点的K近邻分类并进行仿真.仿真结果表明,使用支持向量机结合最近邻分类的分类器分类比单独使用支持向量机分类具有更高的分类准确率,较好地解决应用支持向量机分类时核函数参数的选择问题. 相似文献
20.
场外配资是一种高风险的融资手段,对可疑的场外配资行为进行及时的识别与监控,有利于维护投资者的合法权益与证券市场的稳定.为此提出一种基于改进XGBoost机器学习算法的配资账户识别方法.通过分析场外配资的业务逻辑,构建了与识别算法强相关的特征指标体系,并结合场外配资行为特性采用召回率作为关键度量指标.通过对所构建识别算法... 相似文献