首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemically deposited magnetic nanostructures arranged in a three-dimensional system are investigated with respect to their cross-talk between each other. The nanostructures are embedded in porous silicon templates with different morphologies which means pores offering dendritic growth of different strengths. An increase of the uniformity of the pores is concomitant with an increase of the smoothness of the metal deposits which strongly influences the magnetic behavior of the system. Less dendritic structures lead to an increase of the coercivity of the nanocomposite which reveals less cross-talk between the metal deposits due to a modification of the stray fields. The system allows in a cheap and simple way to tune the magnetic interactions of magnetic nanostructures in a three-dimensional arrangement.

PACS

81.05.Rm; 81.07.Gf; 75.75.-c  相似文献   

2.
Silicon nanocrystals (Si-ncs) are promising for biological studies due to their supposed low cytotoxicity, good biocompatibility and biodegradability in living organisms. However, the bioresearchers'' focus on Si-ncs has lasted only for a few recent years, and detailed studies of the interaction of various types of Si-ncs with biological environment are still rare. Suitable size and solubility of the Si-ncs in water-based isotonic solutions are important towards bringing the nanocrystals inside the living cells. We have prepared colloidal solutions of luminescent porous silicon of different cluster sizes in methanol, water and phosphate-buffered saline (PBS). By combination of ultrasonic treatment with filtration, we have obtained two different silicon cluster sizes in methanol (120 and 525 nm) and three different cluster sizes (85, 210 and 1,500 nm) in PBS. Nanoclusters of heavily oxidized porous silicon are hydrophilic and well soluble in water and/or PBS. They can be further used for studies on the biocompatibility of these materials and may be potentially employed as luminescent markers in living cells in biological research.

PACS

78.67.Rb; 78.67.-n; 87.85.Qr; 87.85.Rs; 81.07.-b  相似文献   

3.
Alkenes are known to react with hydrogen-terminated silicon surfaces to produce robust organic monolayers that are attached to the surface via covalent SiC bonds. In this report we investigate the dependence of the rate of alkylation of porous silicon samples on the reaction time using photochemical initiation. The kinetics of the photochemical alkylation of hydrogen-terminated porous silicon by undec-1-ene in toluene were observed to be pseudo first order, however the apparent rate constant decreased as the concentration of undec-1-ene increased. This behaviour is opposite to what would be expected if the rate-limiting process was an elementary chemical reaction step involving the alkene. Instead, it suggests that transport of the alkene to reactive sites and in the correct orientation is the rate-limiting step. Comparison of the rates of alkylation of porous silicon by undec-1-ene and dimethoxytrityl (DMT)-undecenol is consistent with such an interpretation as the bulky DMT headgroup gives a lower rate of alkylation. The diffusion of some simple redox-active probe molecules in porous silicon was investigated using a scanning electrochemical microscope (SECM). The probe molecules are converted at diffusion-controlled rate at an inlaid disk ultramicroelectrode (UME) consisting of the cross-section of a microwire sealed in glass. If the microelectrode is placed a short distance above the porous silicon, the microelectrode current depends on kinetics of the electrochemical reactions at the porous silicon and the mass transport properties within the open thin layer cell formed by the microelectrode and the alkylated porous silicon. In order to differentiate the effects of finite heterogeneous kinetics at silicon from diffusion limitations, current-distance curves were fitted over a wide range of applied potentials (on the Si) and it was observed that the diffusion coefficient in the porous layer was strongly anisotropic. The measured diffusion rates are comparable to those in bulk water along the pores, but with negligible diffusion between pores. This indicates that few pore-pore interconnections exist in the porous silicon.  相似文献   

4.

Abstract

Using time-resolved photoluminescence spectroscopy over a wide range of temperatures, we were able to probe both radiative and nonradiative relaxation processes in luminescent porous silicon. By comparing the photoluminescence decay times from freshly prepared and oxidized porous silicon, we show that radiative processes should be linked with quantum confinement in small Si nanocrystallites and are not affected by oxidation. In contrast, nonradiative relaxation processes are associated with the state of oxidation where slower relaxation times characterize hydrogen-terminated porous silicon. These results are in a good agreement with the extended vibron model for small Si nanocrystallites.

PACS

78.55.Mb; 78.67.Rb; 78.47.jd  相似文献   

5.
Didier Hamm 《Electrochimica acta》2004,49(27):4949-4955
This work aims to detail the mass change of a porous silicon sample during copper immersion plating. Gravimetric measurements and quantification of the deposited copper by induced coupled plasma spectroscopy (ICP) permit to separate the contributions to the mass change. The results indicate that immersion plating proceeds independently of the porous layer thickness at short immersion time. However, after long immersion duration, the deposition stops and thick porous layers are not fully oxidised. The oxidation of the porous layer is homogeneous and proceeds in depth with time, down to several micrometers.  相似文献   

6.
ABSTRACT: In this paper, we report on the enhancement of spectral photoresponsivity of porous silicon metal-semiconductor metal (PS-MSM) photodetector embedded with colloidal quantum dots (QDs) inside the pore layer. The detection efficiency of QDs/PS hybrid-MSM photodetector was enhanced by five times larger than that of the undoped PS-MSM photodetector. The bandgap alignment between PS (approximately 1.77 eV) and QDs (approximately 1.91 eV) facilitates the photoinduced electron transfer from QDs to PS whereby enhancing the photoresponsivity. We also showed that the photoresponsitivity of QD/PS hybrid-MSM photodetector depends on the number of layer coatings of QDs and the pore sizes of PS.  相似文献   

7.
The features of electrochemical formation process of porous silicon (PS) at the temperatures above the room temperature have been studied. It was found that besides electrochemical dissolution, chemical etching takes part in the formation process of PS even for concentrated HF electrolyte. The role of chemical etching increases with temperature causing an increase of the porosity and the crater depth. The temperature dependence of chemical etching rate has been established. Obtained results enable to conclude that OH ions play a major role in the chemical etching. Electrochemical etching allows to fabricate PS with good surface quality at the temperatures at least below 65 °C provided that HF electrolyte is concentrated.  相似文献   

8.
The nanoscale features in silicon nanowires (SiNWs) can suppress phonon propagation and strongly reduce their thermal conductivities compared to the bulk value. This work measures the thermal conductivity along the axial direction of SiNW arrays with varying nanowire diameters, doping concentrations, surface roughness, and internal porosities using nanosecond transient thermoreflectance. For SiNWs with diameters larger than the phonon mean free path, porosity substantially reduces the thermal conductivity, yielding thermal conductivities as low as 1 W/m/K in highly porous SiNWs. However, when the SiNW diameter is below the phonon mean free path, both the internal porosity and the diameter significantly contribute to phonon scattering and lead to reduced thermal conductivity of the SiNWs.  相似文献   

9.
Sintered porous silicon is a well-known seed for homo-epitaxy that enables fabricating transferrable monocrystalline foils. The crystalline quality of these foils depends on the surface roughness and the strain of this porous seed, which should both be minimized. In order to provide guidelines for an optimum foil growth, we present a systematic investigation of the impact of the thickness of this seed and of its sintering time prior to epitaxial growth on strain and surface roughness. Strain and surface roughness were monitored in monolayers and double layers with different porosities as a function of seed thickness and of sintering time by high-resolution X-ray diffraction and profilometry, respectively. Unexpectedly, we found that strain in double and monolayers evolves in opposite ways with respect to layer thickness. This suggests that an interaction between layers in multiple stacks is to be considered. We also found that if higher seed thickness and longer annealing time are to be preferred to minimize the strain in double layers, the opposite is required to achieve smoother layers. The impact of these two parameters may be explained by considering the morphological evolution of the pores upon sintering and, in particular, the disappearance of interconnections between the porous seed and the bulk as well as the enlargement of pores near the surface. An optimum epitaxial growth hence calls for a trade-off in seed thickness and annealing time, between minimum-strained layers and rougher surfaces.

PACS codes

81.40.-z Treatment of materials and its effects on microstructure, nanostructure, and properties; 81.05.Rm Porous materials; granular materials; 82.80.Ej X-ray, Mössbauer and other γ-ray spectroscopic analysis methods  相似文献   

10.
ABSTRACT: In this work, we report the experimental results and theoretical analysis of strong localization of resonance transmission modes generated by hybrid periodic/quasiperiodic heterostructures (HHs) based on Porous Silicon (PSi). The HHs are formed by stacking a quasiperiodic Fibonacci (FN) substructure between two Distributed Bragg Reflectors (DBRs). FN substructure defines the number of strong localized modes that can be tunable at any given wavelength and be unfolded when a partial periodicity condition is imposed. These structures show interesting properties for biomaterials research, biosensor applications and basic studies of adsorption of organic molecules. We also demonstrate the sensitivity of HHs to material infiltration.  相似文献   

11.
Copper filling into mesopores formed in highly doped p-type silicon was investigated. When the copper electrodeposition was carried out at a very small constant current density (−6.4 μA cm−2), the mesopores with 4 μm depth were filled with copper continuously from the bottom to the opening. When the electrodeposition current was set at an absolute value twice as large as in the above condition, the isolated particles were electrodeposited in the mesopores. The depth also affected the filling behavior. The pores with 8 μm in depth were not continuously filled with copper even in the condition at which the pores of 4 μm in length were completely filled. Electrodeposition behavior in mesopores was also simulated using a simple model. The numerical simulation suggested that the diffusion-limited electrodeposition could be achieved in mesopores at a very small current, at which the diffusion-limited condition had never been realized on a planar electrode.  相似文献   

12.
The propagation of longitudinal acoustic waves in multilayer structures based on porous silicon and the experimental measurement of acoustic transmission for the structures in the gigahertz range are reported and studied theoretically. The considered structures exhibit band gaps in the transmission spectrum and these are localized modes inside the band gap, coming from defect layers introduced in periodic systems. The frequency at which the acoustic resonances appear can be tuned by changing the porosity and/or thickness of the defect layer.  相似文献   

13.
A model is developed to address the uniformity of displacement deposition of nickel inside porous silicon with an ultrahigh aspect ratio as high as 200. The nickel distribution is treated as a current distribution issue as in electrodeposition. It is shown that the deposition distribution along the pore depth exhibits a strong dependence on a polarization parameter ξ. High values of ξ correspond to mass transport limitations and lead to non-uniform distributions, whereas small ξ values, representing interfacial reaction control, produce uniform distributions. Non-uniform deposition primarily occurs at an initial stage in which the reaction is dominated by mass transfer. As the deposition process continues, the deposition rate drops to a low value, and the deposition uniformity shifts from Ni2+ mass transport limitations to its interfacial reaction control, leading to uniform Ni2+ concentration and deposition rate distributions. It is predicted that the non-uniformity at the initial stage could be remedied by increasing the bulk concentration of the nickel ions and decreasing the plating bath pH. In addition, the uniformity of the deposition distribution can be significantly improved by introducing inhibiting additive coumarin to the plating solution.  相似文献   

14.
ABSTRACT: The application of porous silicon as a template for the fabrication of nanosized copper objects is reported. Three different types of nanostructures were formed by displacement deposition of copper on porous silicon from hydrofluoric acid-based solutions of copper sulphate: (1) copper nanoparticles, (2) quasi-continuous copper films, and (3) free porous copper membranes. Managing the parameters of porous silicon (pore sizes, porosity), deposition time, and wettability of the copper sulphate solution has allowed to achieve such variety of the copper structures. Elemental and structural analyses of the obtained structures are presented. Young modulus measurements of the porous copper membrane have been carried out and its modest activity in surface enhanced Raman spectroscopy is declared.  相似文献   

15.
P-type silicon has been patterned using high-energy protons beam prior to electrochemical etching in hydrofluoric acid. The ion beam selectively damages the silicon lattice, resulting in an increase in the local resistivity of the irradiated regions. It is found that the photoluminescence intensity of the irradiated regions increases with proton irradiation into a 0.02 Ω.cm resistivity p-type silicon. By immersing the etched sample into potassium hydroxide, the porous silicon is removed to reveal the underlying three-dimensional structure of the patterned area.  相似文献   

16.
Porous layers were produced on a p-type (100) Si wafer by electrochemical anodic etching. The morphological, nanostructural and optical features of the porous Si were investigated as functions of the etching conditions. As the wafer resistivity was increased from 0.005 to 15 Ω·cm, the etched region exhibited ‘sponge’, ‘mountain’ and ‘column’-type morphologies. Among them, the sponge-type structured sample showed the largest surface area per unit volume. Silicon nanocrystallites, 2.0 to 5.3 nm in size, were confirmed in the porous layers. The photoluminescence peaks varied in the wavelength range of 615 to 722 nm. These changes in the maximum peak position were related to the size distribution of the Si crystallites in the porous silicon. The doping levels of the wafers significantly affect the size distribution of the Si crystallites as well as the light-emitting behavior of the etched Si, which contains nanoscale Si crystallites.  相似文献   

17.
The optical response of porous silicon (pSi) films, covered with a quasi-hexagonal array of hydrogel microspheres, to immersion in ethanol/water mixtures was investigated. For this study, pSi monolayers were fabricated by electrochemical etching, stabilized by thermal oxidation, and decorated with hydrogel microspheres using spin coating. Reflectance spectra of pSi samples with and without deposited hydrogel microspheres were taken at normal incidence. The employed hydrogel microspheres, composed of poly-N-isopropylacrylamide (polyNIPAM), are stimuli-responsive and change their size as well as their refractive index upon exposure to alcohol/water mixtures. Hence, distinct differences in the interference pattern of bare pSi films and pSi layers covered with polyNIPAM spheres could be observed upon their immersion in the respective solutions using reflective interferometric Fourier transform spectroscopy (RIFTS). Here, the amount of reflected light (fast Fourier transform (FFT) amplitude), which corresponds to the refractive index contrast and light scattering at the pSi film interfaces, showed distinct differences for the two fabricated samples. Whereas the FFT amplitude of the bare porous silicon film followed the changes in the refractive index of the surrounding medium, the FFT amplitude of the pSi/polyNIPAM structure depended on the swelling/shrinking of the attached hydrogel spheres and exhibited a minimum in ethanol-water mixtures with 20 wt% ethanol. At this value, the polyNIPAM microgel is collapsed to its minimum size. In contrast, the effective optical thickness, which reflects the effective refractive index of the porous layer, was not influenced by the attached hydrogel spheres.

PACS

81.05.Rm; 81.16.Dn; 83.80Kn; 42.79.Pw  相似文献   

18.
ABSTRACT: The aim of this work is to getter undesirable impurities from low cost multicrystalline silicon (mc-Si) wafers and then enhance their electronic properties. We used an efficient process which consists in applying phosphorus diffusion into a sacrificial porous silicon (PS) layer in which the gettered impurities have been trapped after the heat treatment. As we have expected, after removing the phosphorus-rich porous silicon (PS) layer, the electrical properties of the mc-Si wafers were significantly improved. The PS layers, realized on both sides of the mc-Si substrates, were formed by the stain-etching technique. The phosphorus treatment was achieved using a liquid POCl3-based source on both sides of the mc-Si wafers. The realized phosphorus/PS/Si/PS/phosphorus structures were annealed at a temperature ranging between 700 degreesC and 950 degreesC under an O2 controlled atmosphere, which allows phosphorus to diffuse throughout the PS layers and to getter eventual metal impurities towards the phosphorus doped PS layer. The effect of this gettering procedure was investigated by means of the internal quantum efficiency (IQE) and the dark current-voltage (I-V) characteristics. The minority carrier lifetime measurements were made using a WTC-120 photoconductance lifetime tester. The serial resistance and the shunt resistance carried out from the dark (I-V) curves confirm this gettering-related solar cell improvement. It has been shown that the photovoltaic parameters of the gettered silicon solar cells were improved as regard to the ungettered one, what proves the beneficial effect of this gettering process on the conversion efficiency of the multicrystalline silicon solar cells.  相似文献   

19.
ABSTRACT: Porous silicon microcavity (PSiMc) structures were used to immobilize the photosynthetic reaction center (RC) purified from the purple bacterium Rhodobacter sphaeroides R-26. Two different binding methods were compared by specular reflectance measurements. Structural characterization of PSiMc was performed by scanning electron microscopy and atomic force microscopy. The activity of the immobilized RC was checked by measuring the visible absorption spectra of the externally added electron donor, mammalian cytochrome c. PSi/RC complex was found to oxidize the cytochrome c after every saturating Xe flash, indicating the accessibility of specific surface binding sites on the immobilized RC, for the external electron donor. This new type of bio-nanomaterial is considered as an excellent model for new generation applications of silicon-based electronics and biological redox systems.  相似文献   

20.
Nanostructured porous silicon (PS) layer is prepared in a lightly doped p-type substrate (with pores < 5 nm) and used as a working electrode to deposit conducting polypyrrole (PPy) by the electrochemical oxidative polymerization technique in an organic liquid phase. Three distinguishable stages of PPy deposition are observed and recorded under constant applied current: nucleation of polymer at the pore bottom, unidirectional growth of PPy inside the pores, and polymerization outside the PS surface. The hybrid nanostrucutre of PS/PPy shows a significant improvement of electrical conductivity as opposed to the unmodified PS layer. The improved conductivity is observed in spite of the formation of insulating layer of silicon oxides as detected by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) measurements. Systematic study of fabrication and characterization of this organic-inorganic heterosystem, quantification of the PPy in the PS matrix, and the mechanism of filling the nanopores with polymer are presented and thoroughly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号