首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite serious methanol crossover issues in Direct Methanol Fuel Cells (DMFCs), the use of high-concentration methanol fuel is highly demanded to improve the energy density of passive fuel DMFC systems for portable applications. In this paper, the effects of a hydrophobic anode micro-porous layer (MPL) and cathode air humidification are experimentally studied as a function of the methanol-feed concentration. It is found in polarization tests that the anode MPL dramatically influences cell performance, positively under high-concentration methanol-feed but negatively under low-concentration methanol-feed, which indicates that methanol transport in the anode is considerably altered by the presence of the anode MPL. In addition, the experimental data show that cathode air humidification has a beneficial effect on cell performance due to the enhanced backflow of water from the cathode to the anode and the subsequent dilution of the methanol concentration in the anode catalyst layer. Using an advanced membrane electrode assembly (MEA) with the anode MPL and cathode air humidification, we report that the maximum power density of 78 mW/cm2 is achieved at a methanol-feed concentration of 8 M and cell operating temperature of 60 °C. This paper illustrates that the anode MPL and cathode air humidification are key factors to successfully operate a DMFC with high-concentration methanol fuel.  相似文献   

2.
The effects of the parameters of the anode gas diffusion layer (GDL), including the PTFE content in the backing layer (BL), the PTFE content in the microporous layer (MPL), and the carbon black loading on the performance of a liquid‐feed direct dimethyl ether fuel cell (DDFC), were experimentally investigated. The results indicated that increase in the PTFE content can produce more cracks across the whole surface of the MPL. These cracks were benefit to the anode two‐phase mass transport. The optimal PTFE content in anode BL and MPL was 18 and 40 wt%, respectively. The performances of the DDFCs tended to decline with the increase in the carbon black loading in the anode GDLs due to the difficult long path of mass transport. The maximum power density was obtained with 18 wt% PTFE in BL and 0 mg cm?2 carbon black loading, the optimal result, was 76.6 mW cm?2 at ambient pressure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A new cathode architecture for anion-exchange membrane fuel cells (AEMFCs) is proposed and fabricated by direct deposition of palladium (Pd) particles onto the surface of the micro-porous layer (MPL) that is interfaced with a backing layer. The MPL is composed of carbon nanotubes while the backing layer is made of a carbon paper. The sputter-deposited electrode with a worm-like shape not only extends the electrochemical active surface area, but also facilitates the oxygen transport. This new cathode, albeit with a Pd loading as low as 0.035 mg cm−2, enables the peak power density of an AEM direct ethanol fuel cell to be as high as 88 mW cm−2 (at 60 °C), which is even higher than that using a conventional cathode with a 15-times higher Pd loading. The significance of the present work lies in the fact that the new sputter-deposited electrode is more suitable for fuel-electrolyte-fed fuel cells than the conventional electrode designed for proton-exchange membrane fuel cells (PEMFCs).  相似文献   

4.
The optimal design of the cathode gas diffusion layer (GDL) for direct methanol fuel cells (DMFCs) is not only to attain better cell performance, but also to achieve better water management for the DMFC system. In this work, the effects of both the PTFE loading in the cathode backing layer (BL) as well as in the micro-porous layer (MPL) and the carbon loading in the MPL on both water transport and cell performance were investigated experimentally. The experimental data showed that with the presence of a hydrophobic MPL in the GDL, the water-crossover flux through the membrane decreased slightly with increasing the PTFE loading in the BL. However, a higher PTFE loading in the BL not only lowered cell performance, but also resulted in an unstable discharging process. It was also found that the PTFE loading in the MPL had little effect on the water-crossover flux, but its effect on cell performance was substantial: the 40-wt% PTFE loading in the MPL was found to be the optimal value to achieve the best performance. The experimental results further showed that increasing the carbon loading in the MPL significantly lowered the water-crossover flux, but a too high carbon loading would decrease the cell performance as the result of the increased oxygen transport resistance; the 2.0-mg C cm−2 carbon loading was found to exhibit the best performance.  相似文献   

5.
A novel membrane electrode assembly (MEA) is described that utilizes a double microporous layer (MPL) structure in the cathode of a passive direct methanol fuel cell (DMFC). The double MPL cathode uses Ketjen Black carbon as an inner-MPL and Vulcan XC-72R carbon as an outer-MPL. Experimental results indicate that this double MPL structure at the cathode provides not only a higher oxygen transfer rate, but enables more effective back diffusion of water; thus, leading to an improved power density and stability of the passive DMFC. The maximum power density of an MEA with a double MPL cathode was observed to be ca. 33.0 mW cm−2, which is found to be a substantial improvement over that for a passive DMFC with a conventional MEA. A. C. impedance analysis suggests that the increased performance of a DMFC with the double MPL cathode might be attributable to a decreased charge transfer resistance for the cathode oxygen reduction reaction.  相似文献   

6.
A highly reliable experimental system that consistently closed the overall water balance to within 5% was developed to study the role of a microporous layer (MPL), attached to carbon paper porous transport layer (PTL), on the water transport and performance of a standard 100 cm2 active area PEM fuel cell. Various combinations of cells were built and tested with PTLs at the electrodes using either carbon fibre paper with a MPL (SGL 10BB) or carbon fibre paper without a MPL (SGL 10BA). The net water drag coefficient at three current densities (0.3, 0.5 and 0.7 A cm−2) for two combinations of anode/cathode relative humidity (60/100% and 100/60%) and stoichiometric ratios of H2/air (1.4/3 and 1.4/2) was determined from water balance measurements. The addition of a MPL to the carbon fibre paper PTL at the cathode did not cause a statistically significant change to the overall drag coefficient although there was a significant improvement to the fuel cell performance and durability when a MPL was used at the cathode. The presence of a MPL on either electrode or on both electrodes also exhibited similar performance compared to when the MPL was placed at the cathode. These results indicate that the presence of MPL indeed improves the cell performance although it does not affect the net water drag coefficient. The correlation between cell performance and global water transport cannot be ascertained and warrants further experimental investigation.  相似文献   

7.
《Journal of power sources》2005,144(1):141-145
A micro direct methanol fuel cell (μDMFC) with active area of 1.625 cm2 has been developed for high power portable applications and its electrochemical characterization carried out in this study. The fragility of the silicon wafer makes it difficult to compress the cell for good sealing and hence to reduce contact resistance in the Si-based μDMFC. We have instead used very thin stainless steel plates as bipolar plates with the flow field machined by photochemical etching technology. For both anode and cathode flow fields, widths of both the channel and rib were 750 μm, with a channel depth of 500 μm. A gold layer was deposited on the stainless steel plate to prevent corrosion. This study used an advanced MEA developed in-house featuring a modified anode backing structure with a compact microporous layer. Maximum power density of the micro DMFC reached 62.5 mW cm−2 at 40 °C, and 100 mW cm−2 at 60 °C at atmospheric pressure, which almost doubled the performance of our previous Si-based μDMFC.  相似文献   

8.
The microporous layer (MPL) as a part of diffusion medium has an important impact on mass transfer of proton exchange membrane fuel cell (PEMFC). In this study, MPLs of gas diffusion layers (GDLs) are prepared with different carbon blacks, and the properties of carbon blacks and their effects as MPLs on cell performance are systematically investigated. The results show that the GDL prepared by Acetylene Black (ACET) exhibits the best performance with a maximum power density up to 2.05 W cm−2. Moreover, it still maintains extremely high performance with increasing current density even at humidity condition of 100% relative humidity, which means its excellent water/gas transportation capacity. This study contributes to deeply understanding the correlations between the properties of MPL material itself and their corresponding performance exhibited in cell. It also provides an important reference for enhancing cell performance and further advancing the practical applications of MPLs in PEMFC field.  相似文献   

9.
This study presents the benefit to an operating direct methanol fuel cell (DMFC) by coating a micro-porous layer (MPL) on the surface of anode gas diffusion layer (GDL). Taking the membrane electrode assembly (MEA) with and without the anodic MPL structure into account, the performances of the two types of MEA are evaluated by measuring the polarization curves together with the specific power density at a constant current density. Regarding the cell performances, the comparisons between the average power performances of the two different MEAs at low and high current density, various methanol concentrations and air flow rates are carried out by using the electrochemical impedance spectroscopy (EIS) technique. In contrast to conventional half cell EIS measurements, both the anode and cathode impedance spectra are measured in real-time during the discharge regime of the DMFC. As comparing each anode and cathode EIS between the two different MEAs, the influences of the anodic MPL on the anode and cathode reactions are systematically discussed and analyzed. Furthermore, the results are used to infer complete and reasonable interpretations of the combined effects caused by the anodic MPL on the full cell impedance, which correspond with the practical cell performance.  相似文献   

10.
An ultrathin layer of hydrophilic titanium dioxide (TiO2) is coated on the gas diffusion layer (GDL) to enhance the performance of a proton exchange membrane fuel cell (PEMFC) at low relative humidity (RH) and high cell temperature. Both of the modified and unmodified GDLs are characterized using contact angles, and the cell performance is evaluated at various RHs and cell temperatures. It is found that the modified GDL, which contains a hydrophilic TiO2 layer between the microporous layer (MPL) and the gas diffusion-backing layer (GDBL), exhibits better self-humidification performance than a conventional GDL without the TiO2 layer. At 12% RH and 65 °C cell temperature, the current density is 1190 mA cm−2 at 0.6 V, and it maintains 95.8% of its initial performance after 50 h of continuous testing. The conventional GDL, however, exhibits 55.7% (580 mA cm−2) of its initial performance (1040 mA cm−2) within 12 h of testing. The coated hydrophilic TiO2 layer acts as a mini humidifier retaining sufficient moisture for a PEMFC to function at low humidity conditions.  相似文献   

11.
In this work, a novel self-humidifying membrane electrode assembly (MEA) with addition of polyvinyl alcohol (PVA) as the hygroscopic agent into anode catalyst layer was developed for proton exchange membrane fuel cell (PEMFC). The MEA shows good self humidification performance, for the sample with PVA addition of 5 wt.% (MEA PVA5), the maximum power density can reach up to 623.3 mW·cm−2, with current densities of 1000 mA·cm−2 at 0.6 V and 600 mA·cm−2 at 0.7 V respectively, at 50 °C and 34% of relative humidity (RH). It is interesting that the performance of MEA PVA5 hardly changes even if the relative humidity of both the anode and cathode decreased from 100% to 34%. The MEA PVA5 also shows good stability at low humidity operating conditions: keeping the MEA discharged at constant voltage of 0.6 V for 60 h at 34% of RH, the attenuation of the current density is less than 10%, whilst for the MEA without addition of PVA, the attenuation is high up to 80% within 5 h.  相似文献   

12.
《Journal of power sources》2005,144(1):113-121
A design for an air-breathing and passive polymer electrolyte fuel cell is presented. Such a type of fuel cell is in general promising for portable electronics. In the present design, the anode current collector is made of a thin copper foil. The foil is provided with an adhesive and conductive coating, which firstly tightens the hydrogen compartment without mask or clamping pressure, and secondly secures a good electronic contact between the anode backing and the current collector. The cathode comprises a backing, a gold-plated stainless steel mesh and a current collector cut out from a printed circuit board. Three geometries for the cathode current collector were evaluated. Single cells with an active area of 2 cm2 yielded a peak power of 250–300 mW cm−2 with air and pure H2 in a complete passive mode except for the controlled flow of H2. The cells’ response was investigated in steady state and transient modes.  相似文献   

13.
《Journal of power sources》2004,133(2):175-180
Adoption of a sintered stainless steel fiber felt was evaluated as gas diffusion backing in air-breathing direct methanol fuel cell (DMFC). By using a sintered stainless steel fiber felt as an anodic gas diffusion backing, the peak power density of an air-breathing DMFC is 24 mW cm−2, which is better than that of common carbon paper. A 30-h-life test indicates that the degraded performance of the air-breathing DMFC is primarily due to the water flooding of the cathode. Twelve unit cells with each has 6 cm2 of active area are connected in series to supply the power to a mobile phone assisted by a constant voltage diode. The maximum power density of 26 mW cm−2 was achieved in the stack, which is higher than that in single cell. The results show that the sintered stainless steel felt is a promising solution to gas diffusion backing in the air-breathing DMFC, especially in the anodic side because of its high electronical conductivity and hydrophilicity.  相似文献   

14.
Electrochemical losses as a function of the micro-porous layer (MPL) arrangement in Proton Exchange Membrane Fuel Cells (PEMFCs) are investigated by electrochemical impedance spectroscopy (EIS). Net water flux across the polymer membrane in PEMFCs is investigated for various arrangements of the MPL, namely with MPL on the cathode side alone, with MPL on both the cathode and the anode sides and without MPL. EIS and water transport are recorded for various operating conditions, such as the relative humidity of the hydrogen inlet and current density, in a PEMFC fed by fully-saturated air. The cell with an MPL on the cathode side alone has better performance than two other types of cells. Furthermore, the cell with an MPL on only the cathode increases the water flux from cathode to anode as compared to the cells with MPLs on both electrodes and cells without MPL. Oxygen-mass-transport resistances of cells in the presence of an MPL on the cathode are lower than the values for the other two cells, which indicates that the molar concentration of oxygen at the reaction surface of the catalyst layer is higher. This suggests that the MPL forces the liquid water from the cathode side to the anode side and decreases the liquid saturation in GDL at high current densities. Consequently, the MPL helps in maintaining the water content in the polymer membrane and decreases the cathode charge transfer and oxygen-mass transport resistances in PEMFCs, even when the hydrogen inlet has a low relative humidity.  相似文献   

15.
《Journal of power sources》2006,159(2):1084-1088
A borohydride fuel cell has been constructed using a platinized multiwalled carbon nanotube (MWCNT) anode and an air cathode having an anionic exchange membrane separating the anode and cathode. The MWCNT was functionalized with carboxylic acid under nitric acid reflux. Platinum metal was subsequently incorporated into it by galvanostatic deposition. The platinized functionalized MWCNT was characterized by thermogravimetric analysis, Fourier transform infrared spectrum, scanning electron microscope and X-ray diffraction. The fuel cell produced a voltage of 0.95 V at low currents and a maximum power density of 44 mW cm−2 at room temperature in 10% sodium borohydride in a 4 M sodium hydroxide medium. Another borohydride fuel cell under identical conditions using carbon as the anode produced a cell voltage of 0.90 V and power density of about 20 mW cm−2. The improved performance of the MWCNT is attributed to the higher effective surface area and catalytic activity.  相似文献   

16.
The exploration of catalysts with high activity and low cost for water splitting is still necessary. Herein, a nanowire-like morphology CoO/NF electrode is synthesized using facile hydrothermal reaction and calcination treatment. The urea can regulate its morphology during the synthetic process of CoO/NF. Electrochemical studies reveal that the as-obtained CoO/NF exhibits excellent electrocatalytic performance with overpotential of 307 mV at current density of 10 mA cm−2 and Tafel slope of 72 mV dec−1 for oxygen evolution reaction, and CoO/NF delivers current density of 10 mA cm−2 at overpotential of 224 mV for hydrogen evolution reaction. The results of the oxygen evolution reaction stability show that the overpotential of CoO/NF electrode is only increased by 4 mV at current density of 10 mA cm−2. The two-electrode water splitting with CoO/NF electrodes as both anode and cathode needs a cell potential of 1.76 V to reach 10 mA cm−2. Therefore, this simple method to prepare CoO/NF electrode can enhance the properties of electrocatalysts, which makes CoO/NF a promising material to replace noble metal-based catalysts.  相似文献   

17.
We investigated the effects of the compositions of catalyst layers and diffusion layers on performances of the membrane electrode assemblies (MEAs) for direct dimethyl ether fuel cell. The performances of the MEAs with different thicknesses of Nafion membranes were compared in this work. The optimal compositions in the anode are: 20 wt% Nafion content and 3.6 mg cm−2 Pt loading in the catalyst layer, and 30 wt% PTFE content and 1 mg cm−2 carbon black loading in the diffusion layer. In the cathode, MEA with 20 wt% Nafion content in the catalyst layer and 30 wt% PTFE content in the diffusion layer presented the optimal performance. The MEA with Nafion 115 membrane displayed the highest maximum power density of 46 mW cm−2 among the three MEAs with different Nafion membranes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A novel carboxylated multiwalled carbon nanotubes/carbon nanofibers (CNTs/CNFs) composite electrode was fabricated by electrospinning. Heat pressing process was applied to improve the interconnection of fiber aggregates, mechanical stability and reduce the contact resistance. Optimal dose of carbon nanotubes was selected to fabricate the anode in microbial fuel cells after comparing with plain electrospinning CNFs anode and commercial carbon felt (CF) anode. As a result, the optimal anode delivered a maximum power density of 362 ± 20 mW m−2, which is 110%, 122% higher than that of carbon nanofibers and carbon felt anodes. Cyclic voltammograms, Tafel and electrochemical impedance spectroscopy tests also verified that the prepared electrode has largest catalytic current (148 μA cm−2) and exchange current density i0 (6.3 × 10−5 A cm−2), as well as smallest internal resistance (∼40 Ω). The as-prepared anode exhibited a better conductivity, excellent biocompatibility, good hydrophilicity and superior electrocatalytic activity, which was not only beneficial to the attachment and reproduction of microorganisms, but also promoted extracellular electron transfer between bacteria cells and the anode. This result shows that electrospinning has a promising perspective in fabricating high performance electrodes for microbial fuel cells.  相似文献   

19.
Factors as the Pt/C ratio of the catalyst, the binder content of the electrode and the catalyst deposition method were studied within the scope of ultra-low Pt loading electrodes for high temperature proton exchange membrane fuel cells (HT-PEMFCs). The Pt/C ratio of the catalyst allowed to tune the thickness of the catalytic layer and so to minimize the detrimental effect of the phosphoric acid flooding. A membrane electrode assembly (MEA) with 0.05 mgPtcm−2 at anode and 0.1 mgPtcm−2 at cathode (0.150 mgPtcm−2 in total) attained a peak power density of 346 mW cm−2. It was proven that including a binder in the catalytic layer of ultra-low Pt loading electrodes lowers its performance. Electrospraying-based MEAs with ultra-low Pt loaded electrodes (0.1 mgPtcm−2) rendered the best (peak power density of 400 mW cm−2) compared to conventional methods (spraying or ultrasonic spraying) but with the penalty of a low catalyst deposition rate.  相似文献   

20.
The addition of carbon nanotubes (CNTs) into anodic micro-porous layer (MPL) of the membrane electrode assembly significantly improves the performance of the passive micro-direct methanol fuel cells (DMFCs). The maximum power density of ca. 32.2 mW cm−2 at a temperature of ca. 25 °C and under air-breathing mode is achieved with pure CNTs as anode MPL material. Impedance analysis and cyclic voltammetric measurements of the anodes indicate that the increased performance of the passive DMFC with the addition of CNTs into anodic MPLs could be attributed to the decrease in charge transfer resistance of the anode reaction and to the improvement in catalyst utilization. Scanning electron microscopy measurements show the network formation within the MPL due to the one-dimensional structure of CNTs, which could be beneficial to the methanol mass transfer and to the improvement in catalyst utilization. Furthermore, the durability test of a passive DMFC after 300 h operation demonstrates that the passive DMFC with CNTs as anode MPL materials exhibits very good stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号