首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A theoretical modeling approach is presented, which describes the behavior of a typical fuel cell–heat engine hybrid system in steady-state operating condition based on an existing solid oxide fuel cell model, to provide useful fundamental design characteristics as well as potential critical problems. The different sources of irreversible losses, such as the electrochemical reaction, electric resistances, finite-rate heat transfer between the fuel cell and the heat engine, and heat-leak from the fuel cell to the environment are specified and investigated. Energy and entropy analyses are used to indicate the multi-irreversible losses and to assess the work potentials of the hybrid system. Expressions for the power output and efficiency of the hybrid system are derived and the performance characteristics of the system are presented and discussed in detail. The effects of the design parameters and operating conditions on the system performance are studied numerically. It is found that there exist certain optimum criteria for some important parameters. The results obtained here may provide a theoretical basis for both the optimal design and operation of real fuel cell–heat engine hybrid systems. This new approach can be easily extended to other fuel cell hybrid systems to develop irreversible models suitable for the investigation and optimization of similar energy conversion settings and electrochemistry systems.  相似文献   

2.
This article aims to develop a thermodynamic modelling and optimization framework for a thorough understanding of the optimal integration of fuel cell, gas turbine and other components in an ambient pressure SOFC-GT hybrid power plant. This method is based on the coupling of a syngas-fed SOFC model and an associated irreversible GT model, with an optimization algorithm developed using MATLAB to efficiently explore the range of possible operating conditions. Energy and entropy balance analysis has been carried out for the entire system to observe the irreversibility distribution within the plant and the contribution of different components. Based on the methodology developed, a comprehensive parametric analysis has been performed to explore the optimum system behavior, and predict the sensitivity of system performance to the variations in major design and operating parameters. The current density, operating temperature, fuel utilization and temperature gradient of the fuel cell, as well as the isentropic efficiencies and temperature ratio of the gas turbine cycle, together with three parameters related to the heat transfer between subsystems are all set to be controllable variables. Other factors affecting the hybrid efficiency have been further simulated and analysed. The model developed is able to predict the performance characteristics of a wide range of hybrid systems potentially sizing from 2000 to 2500 W m−2 with efficiencies varying between 50% and 60%. The analysis enables us to identify the system design tradeoffs, and therefore to determine better integration strategies for advanced SOFC-GT systems.  相似文献   

3.
The presented work addresses the design and optimization under uncertainty of power generation systems using renewable energy sources and hydrogen storage. A systematic design approach is proposed that enables the simultaneous consideration of synergies developed among numerous sub-systems within an integrated power generation system and the uncertainty involved in the system operation. The Stochastic Annealing optimization algorithm is utilized to handle the increased combinatorial complexity and to enable the consideration of different types of uncertainty in the performed optimization. A parallel adaptation of this algorithm is proposed to address the associated computational requirements through execution in a Grid computing environment. The proposed developments are implemented in a system that consists of photovoltaic panels, wind generators, accumulators, an electrolyzer, storage tanks, a compressor, a fuel cell and a diesel generator. Numerous design and operating parameters are considered as decision variables, while uncertain parameters are associated with weather fluctuations and operating efficiency of the employed sub-systems. The obtained results indicate robust performance under realizable system designs, in response to external or internal operating variations.  相似文献   

4.
A hybrid system consisting of an AFC (Alkaline Fuel Cell), a TEG (Thermoelectric Generator) and a regenerator is put forward, where the AFC converts the chemical energy in the hydrogen into electrical energy and thermal energy, and the released thermal energy is subsequently converted into electrical energy through the bottoming TEG. The main irreversible losses in each element of the hybrid system are characterized, and numerical expressions for the efficiency and power output of the AFC, TEG and hybrid system are respectively derived. The fundamental relation between the operating current density of the AFC and the dimensionless current of the TEG is obtained, from which the region of the operating current density of the AFC that the TEG exerts its function is determined. By employing such a hybrid system, the equivalent maximum power density of the AFC can be increased by up to 23%. The effects of the operating current density, operating temperature, heat conductivity, and integrated parameter on the performance of the hybrid system are revealed. The results obtained in the present paper will provide some theoretical guidance for the performance improvement of the AFC.  相似文献   

5.
A combined system model consisting of a high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC), a regenerator and a thermoelectric generator (TEG) is proposed, where the TEG is applied to harness the generated waste heat in the HT-PEMFC for extra electricity production. The TEG considers not only the Seebeck effect and Peltier effect but also the Thomson effect. The mathematical expressions of power output, energy efficiency, exergy destruction rate and exergy efficiency for the proposed system are derived. The energetic and exergetic performance characteristics for the whole system are revealed. The optimum operating ranges for some key performance parameters of the combined system are determined using the maximum power density as the objective function. The combined system maximum power density and its corresponding energy efficiency and exergy efficiency allow 19.1%, 12.4% and 12.6% higher than that of a stand-alone HT-PEMFC, while the exergy destruction rate density is only increased by 8.6%. The system performances are compared between the TEG with and without the Thomson effect. Moreover, the impacts of comprehensive parameters on the system performance characteristics are discussed. The obtained results are helpful in developing and designing such an actual combined system for efficient and clean power production.  相似文献   

6.
This paper compares the performance characteristics of a combined power system with solid oxide fuel cell (SOFC) and gas turbine (GT) working under two thermodynamic optimization strategies. Expressions of the optimized power output and efficiency for both the subsystems and the SOFC-GT hybrid cycle are derived. Optimal performance characteristics are discussed and compared in detail through a parametric analysis to evaluate the impact of multi-irreversibilities that take into account on the system behaviour. It is found that there exist certain new optimum criteria for some important design and operating parameters. Engineers should find the methodologies developed in this paper useful in the optimal design and practical operation of complex hybrid fuel cell power plants.  相似文献   

7.
An irreversible model of a class of hydrogen–oxygen fuel cells working at steady-state is established, in which the irreversibilities resulting from electrochemical reaction, electrical resistance, and heat transfer to the environment are taken into account. The entropy production analysis is introduced and applied to investigate the physical and chemical performances of the fuel cell by using the theory of electrochemistry and non-equilibrium thermodynamics. Expressions for the power output and efficiency of the fuel cell are derived by introducing the equivalent internal and leakage resistances. With the help of the model being applied to high temperature solid oxide fuel cells, the performance characteristic curves of the fuel cell are presented and the influence of some design and operating parameters on the performance of the fuel cell are discussed in detail. Moreover, the optimum criteria of some important parameters such as the power output, efficiency, and current density are given. The results obtained may provide a theoretical basis for both the optimal design and operation of real fuel cells. This new method can also be used in the investigation and optimization of similar energy conversion settings and electrochemistry systems.  相似文献   

8.
The power management strategy (PMS) plays an important role in the optimum design and efficient utilization of hybrid energy systems. The power available from hybrid systems and the overall lifetime of system components are highly affected by PMS. This paper presents a novel method for the determination of the optimum PMS of hybrid energy systems including various generators and storage units. The PMS optimization is integrated with the sizing procedure of the hybrid system. The method is tested on a system with several widely used generators in off-grid systems, including wind turbines, PV panels, fuel cells, electrolyzers, hydrogen tanks, batteries, and diesel generators. The aim of the optimization problem is to simultaneously minimize the overall cost of the system, unmet load, and fuel emission considering the uncertainties associated with renewable energy sources (RES). These uncertainties are modeled by using various possible scenarios for wind speed and solar irradiation based on Weibull and Beta probability distribution functions (PDF), respectively. The differential evolution algorithm (DEA) accompanied with fuzzy technique is used to handle the mixed-integer nonlinear multi-objective optimization problem. The optimum solution, including design parameters of system components and the monthly PMS parameters adapting climatic changes during a year, are obtained. Considering operating limitations of system devices, the parameters characterize the priority and share of each storage component for serving the deficit energy or storing surplus energy both resulted from the mismatch of power between load and generation. In order to have efficient power exploitation from RES, the optimum monthly tilt angles of PV panels and the optimum tower height for wind turbines are calculated. Numerical results are compared with the results of optimal sizing assuming pre-defined PMS without using the proposed power management optimization method. The comparative results present the efficacy and capability of the proposed method for hybrid energy systems.  相似文献   

9.
A technico-economic analysis based on integrated modeling, simulation, and optimization approach is used in this study to design an off grid hybrid solar PV/Fuel Cell power system. The main objective is to optimize the design and develop dispatch control strategies of the standalone hybrid renewable power system to meet the desired electric load of a residential community located in a desert region. The effects of temperature and dust accumulation on the solar PV panels on the design and performance of the hybrid power system in a desert region is investigated. The goal of the proposed off-grid hybrid renewable energy system is to increase the penetration of renewable energy in the energy mix, reduce the greenhouse gas emissions from fossil fuel combustion, and lower the cost of energy from the power systems. Simulation, modeling, optimization and dispatch control strategies were used in this study to determine the performance and the cost of the proposed hybrid renewable power system. The simulation results show that the distributed power generation using solar PV and Fuel Cell energy systems integrated with an electrolyzer for hydrogen production and using cycle charging dispatch control strategy (the fuel cell will operate to meet the AC primary load and the surplus of electrical power is used to run the electrolyzer) offers the best performance. The hybrid power system was designed to meet the energy demand of 4500 kWh/day of the residential community (150 houses). The total power production from the distributed hybrid energy system was 52% from the solar PV, and 48% from the fuel cell. From the total electricity generated from the photovoltaic hydrogen fuel cell hybrid system, 80.70% is used to meet all the AC load of the residential community with negligible unmet AC primary load (0.08%), 14.08% is the input DC power for the electrolyzer for hydrogen production, 3.30% are the losses in the DC/AC inverter, and 1.84% is the excess power (dumped energy). The proposed off-grid hybrid renewable power system has 40.2% renewable fraction, is economically viable with a levelized cost of energy of 145 $/MWh and is environmentally friendly (zero carbon dioxide emissions during the electricity generation from the solar PV and Fuel Cell hybrid power system).  相似文献   

10.
Based on the models of a proton exchange membrane (PEM) fuel cell working at steady state and a semiconductor thermoelectric generator, a hybrid system consisting of a PEM fuel cell, a semiconductor thermoelectric generator, and a regenerator is originally put forward. Expressions for the efficiencies and power outputs of the fuel cell, thermoelectric generator, and hybrid system are derived. The relation between the operating electric currents in the fuel cell and thermoelectric generator is obtained. The maximum power output of the hybrid system is numerically given. The optimally operating electric currents in the fuel cell and thermoelectric generator are calculated, and consequently, the optimal region of the hybrid system is determined. The results obtained here will provide some guidance for further understanding the performance and operation of practical PEM fuel cell-thermoelectric generator hybrid systems.  相似文献   

11.
Power systems based on fuel cells have been considered for residential and commercial applications in energy Distributed Generation (DG) markets. In this work we present an experimental analysis of a power generation system formed by a 5 kW proton exchange membrane fuel cell (PEMFC) unit and a natural gas reformer (fuel processor) for hydrogen production. The performance analysis developed simultaneously the energy and economic viewpoints and enabled the determination of the best technical and economic conditions of this energy generation power plant, and the best operating strategies, enabling the optimization of the overall performance of the stationary cogeneration fuel cell unit. It was determined the electrical performance of the cogeneration system in function of the design and operational power plant parameters. Additionally, it was verified the influence of the activation conditions of the fuel cell electrocatalytic system on the system performance. It also appeared that the use of hydrogen produced from the natural gas catalytic reforming provided the system operation in excellent electrothermal stability conditions resulting in increase of the energy conversion efficiency and of the economicity of the cogeneration power plant.  相似文献   

12.
Apart from electricity, solid oxide fuel cell (SOFC) generates a great deal of high-grade exhaust heat, which must be immediately removed to guarantee SOFC's normal operation. To harvest the exhaust heat and improve the overall energy conversion efficiency, a new hybrid system model based upon a SOFC, a vacuum thermionic generator (VTIG) and a thermoelectric generator (TEG) is first proposed. Considering the main thermodynamic-electrochemical irreversible effects, the performance indicators assessing the whole system performance are mathematically derived. In comparison with the performance of sole SOFC, the effectiveness and feasibility of the presented system are verified. Numerical calculation examples illustrate that maximum achievable power density (MAPD) and its corresponding efficiency, exergetic efficiency and exergy destruction rate are, respectively, 26.8%, 9.8%, 9.8% and 8.8% larger than that of the stand-alone SOFC. Exhaustive sensitivity analyses are further conducted to investigate the impacts of various parameters on the tri-generation system performance. Results indicate that the grain size and average pore diameter of electrodes in SOFC and the thermoelectric element number in TEG can be optimized to maximize the hybrid system power density.  相似文献   

13.
Fuel cell-battery hybrid systems for the powertrain, which have the advantage of emission-free power generation and adapt to material transport and emission reduction, are investigated. Based on the characteristics of the fuel cell system and the characteristics of the electric forklift truck powertrain system, this work defines the design principle of the control strategy to improve overall performance and economy. A simulation platform for fuel cell and electric vehicles has been established. The optimal performance of the fuel cell stack and the battery capacity were defined for the specific application. An energy control strategy was defined for different operating cycles and operating conditions. Model validation involved comparing simulation results with experimental data obtained during VDI60 test protocol. The main parameters that influence the forklift performance were defined and evaluated, such as energy loss, fuel cell operating conditions and different battery charging cycles. The optimal size of the fuel cell stack of 11 kW and the battery of 10 Ah was determined for the specific load profile with the proposed control strategy. The results obtained in this work forms the basis for an in-depth study of the energy management of fuel cell battery drive trains for forklift trucks.  相似文献   

14.
In this study, a new molten carbonate fuel cell-gas turbine hybrid system, which consists of a fuel cell, three heat exchangers, a compressor, and a turbine, is established. The multiple irreversible losses existing in real hybrid systems are taken into account by the models of a molten carbonate fuel cell and an open Brayton cycle with a regenerative process. Expressions for the power outputs and efficiencies of the subsystems and hybrid system are derived. The maximum power output and efficiency of the hybrid system are numerically calculated. It is found that compared with a single molten carbonate fuel cell, both the power output and efficiency of the hybrid system are greatly enhanced. The general performance characteristics of the hybrid system are evaluated and the optimal criteria of the main performance parameters are determined. The effects of key irreversibilities on the performance of the hybrid system are investigated in detail. It is found that the use of a regenerator in the gas turbine can availably improve the power output and efficiency of the system. The results obtained here are significant and may be directly used to discuss the optimal performance of the hybrid system in special cases.  相似文献   

15.
In general, modeling of photovoltaic-thermoelectric (PV/TEG) hybrid panels have been mostly simplified and disconnected from the actual ambient conditions and thermal losses from the panel. In this study, a thermally coupled model of PV/TEG panel is established to precisely predict performance of the hybrid system under different weather conditions. The model takes into account solar irradiation, wind speed and ambient temperature as well as convective and radiated heat losses from the front and rear surfaces of the panel. The model is developed for three sample cities in Europe with different weather conditions. The results show that radiated heat loss from the front surface and the convective heat loss due to the wind speed are the most critical parameters on performance of the hybrid panel performance. The results also indicate that, with existing thermoelectric materials, the power generation by the TEG is insignificant compared to electrical output by the PV panel, and the TEG plays only a small role on power generation in the hybrid PV/TEG panel. However, contribution of the TEG in the power generation can be improved via higher ZT thermoelectric materials and geometry optimization of the TEG.  相似文献   

16.
Solid Oxide Fuel Cells (SOFCs) are of great interest nowadays. The feature of SOFCs makes them suitable for hybrid systems because they work high operating temperature and when combined with conventional turbine power plants offer high cycle efficiencies. In this work a hybrid solid oxide fuel cell and gas turbine power system model is developed. Two models have been developed based on simple thermodynamic expressions. The simple models are used in the preliminary part of the study and a more realistic based on the performance maps. A comparative study of the simulated configurations, based on an energy analysis is used to perform a parametric study of the overall hybrid system efficiency. Some important observations are made by means of a sensitivity study of the whole cycle for the selected configuration. The results of the selected model were compared to an earlier model from an available literature.  相似文献   

17.
An innovative control strategy is proposed of hybrid distributed generation (HDG) systems, including solid oxide fuel cell (SOFC) as the main energy source and battery energy storage as the auxiliary power source. The overall configuration of the HDG system is given, and dynamic models for the SOFC power plant, battery bank and its power electronic interfacing are briefly described, and controller design methodologies for the power conditioning units and fuel cell to control the power flow from the hybrid power plant to the utility grid are presented. To distribute the power between power sources, the fuzzy switching controller has been developed. Then, a Lyapunov based-neuro fuzzy algorithm is presented for designing the controllers of fuel cell power plant, DC/DC and DC/AC converters; to regulate the input fuel flow and meet a desirable output power demand. Simulation results are given to show the overall system performance including load-following and power management of the system.  相似文献   

18.
以氢气为主要燃料的质子交换膜燃料电池是一种良好的清洁能源利用介质,为应对“双碳目标”的挑战,提出基于质子交换膜燃料电池与电转气(P2G)混合储能并考虑系统中风电、光伏出力不确定性因素的综合能源系统模型。首先,对膜燃料电池进行精细化建模分析;其次,对风电、光伏等新能源采取基于小波变换-神经网络的短期预测;最后,建立包含设备运行维护成本、实时电价政策的外购能源等经济成本以及碳惩罚成本的最小优化目标的混合整数线性规划模型,且以系统安全稳定运行为约束。某园区的算例分析结果表明,所提出的考虑新能源出力与PEMFC-P2G混合储能优化模型能有效降低运行成本、减少碳排放,具有良好的经济性与环保性。  相似文献   

19.
To recycle byproduct waste heat, a new hybrid system model that integrates alkaline fuel cell (AFC) with temperature-matching elastocaloric cooler (ECC) is proposed. Considering diverse irreversible effects in thermodynamic and electrochemical processes, the mathematical model of hybrid system is formulated, and the performance metrics of the hybrid system are obtained. The optimally operating current density range of AFC enabling ECC to work is determined. Numerical calculation shows that the equivalent peak output power density and its according efficiency can be 51.64% and 20.88% higher than that of the single AFC, respectively. ECC is demonstrated to be an effective and competitive technology for AFC waste heat harvesting. In addition, considerable sensitivity analyses are performed to check the dependence of the proposed system performance on some key variables, including operating pressure, operating temperature, thermodynamic loss composite parameter, elastocaloric material types and elastocaloric properties, cross-sectional area ratio and length ratio for ECC. The results derived may offer some insights into the design or operation of practical AFC-ECC hybrid systems.  相似文献   

20.
A fully-integrated micro PEM fuel cell system with a NaBH4 hydrogen generator was developed. The micro fuel cell system contained a micro PEM fuel cell and a NaBH4 hydrogen generator. The hydrogen generator comprised a NaBH4 reacting chamber and a hydrogen separating chamber. Photosensitive glass wafers were used to fabricate a lightweight and corrosion-resistant micro fuel cell and hydrogen generator. All of the BOP such as a NaBH4 cartridge, a micropump, and an auxiliary battery were fully integrated. In order to generate stable power output, a hybrid power management operating with a micro fuel cell and battery was designed. The integrated performance of the micro PEM fuel cell with NaBH4 hydrogen generator was evaluated under various operating conditions. The hybrid power output was stably provided by the micro PEM fuel cell and auxiliary battery. The maximum power output and specific energy density of the micro PEM fuel cell system were 250 mW and 111.2 W h/kg, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号