首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Char derived from cyanobacterial blooms (CDCB), by-product of fast pyrolysis of cyanobacterial blooms from Dianchi Lake (Yunnan Province, China) at a final pyrolysis temperature of 500 °C were used as feedstock material in this study. Steam gasification characteristics of CDCB were investigated in a fixed-bed reactor to evaluate the effect of particle size (below 0.15 mm, 0.15–0.3 mm, 0.3–0.45 mm, 0.45–0.9 mm, 0.9–3 mm) and solid residence time (3, 6, 9, 12, 15 min) on gas yield and composition, and experiments were carried out at bed temperature range of 600–850 °C, steam flow rate of 0.178 g/min. The results showed that solid residence time played an important role on steam gasification process, while particle size presented less effect on gasification process; proper particle size and longer residence time were favorable for dry gas yield and carbon conversion efficiency (CCE). At the same time, higher reaction temperature reduced influence of particle size on gasification process, and smaller particle size required less residence time for reaction completed. Maximum dry gas yield and CCE reached 1.84 Nm3 kg−1 and 98.82%, respectively, achieved at a temperature of 850 °C, flow rate of 0.178 g/min, solid residence time of 15 min and particle size range of 0.45–0.9 mm.  相似文献   

2.
This work investigates the opportunity of retrofitting existing small-scale gasifiers shifting from combined heat and power (CHP) to hydrogen and biofuels production, using steam and biomass residues (woodchips, vineyard pruning and bark). The experiments were carried out in a batch reactor at 700 °C and 800 °C and at different steam flow (SF) rates (0.04 g/min and 0.20 g/min). The composition of the producer gas is in the range of 46–70 % H2, 9–29 % CO, 12–27 % CO2, and 2–6 % CH4. A producer gas specific production factor of approx. 10 NLpg/gchar can be achieved when the lower SFs are used, which allows to provide 80 % of the hydrogen concentration required for biomethanation and MeOH synthesis. As for FT synthesis, an optimal H2/CO ratio of approx. 2 can be achieved. The results of this work provide further evidence towards the feasibility of hydrogen and biofuels generation from residual biomass through steam gasification.  相似文献   

3.
《能源学会志》2019,92(6):1641-1646
Biomass is extensively considered as a feed-stock for bio-chemicals and bio-fuels production. Among all options for the utilization of biomass, gasification process is more popular because of its environmental advantages. In this study, biomass gasification with CO2 removal by CaO sorbent was simulated by using a commercial simulator. The model accuracy was validated with reported results from steam only gasification of biomass in presence of CaO. The system was evaluated through tar yield, carbon conversion, gas quality and H2 yield by varying the reaction temperature, steam flow rate and CaO flow rate. The hydrogen yield enhanced slightly from 187.32 ml/g to 198.49 ml/g with the increase of CaO/B from 1.0 to 1.5. However, a further enhancement in CaO/B from 1.5 to 2 sharply enhanced the hydrogen yield approximately 1.55 times (from 198.49 ml/g to 308.54 ml/g).  相似文献   

4.
Hydrothermal gasification in subcritical and supercritical water is gaining attention as an attractive option to produce hydrogen from lignocellulosic biomass. However, for process optimization, it is important to understand the fundamental phenomenon involved in hydrothermal gasification of synthetic biomass or biomass model compounds, namely cellulose, hemicellulose and lignin. In this study, the response surface methodology using the Box-Behnken design was applied for the first time to optimize the process parameters during hydrothermal (subcritical and supercritical water) gasification of cellulose. The process parameters investigated include temperature (300–500 °C), reaction time (30–60 min) and feedstock concentration (10–30 wt%). Temperature was found to be the most significant factor that influenced the yields of hydrogen and total gases. Furthermore, negligible interaction was found between lower temperatures and reaction time while the interaction became dominant at higher temperatures. Hydrogen yield remained at about 0.8 mmol/g with an increase in the reaction time from 30 min to 60 min at the temperature range of 300–400 °C. When the temperature was raised to 500 °C, hydrogen yield started to elevate at longer reaction time. Maximum hydrogen yield of 1.95 mmol/g was obtained from supercritical water gasification of cellulose alone at 500 °C with 12.5 wt% feedstock concentration in 60 min. Using these optimal reaction conditions, a comparative evaluation of the gas yields and product distribution of cellulose, hemicellulose (xylose) and lignin was performed. Among the three model compounds, hydrogen yields increased in the order of lignin (0.73 mmol/g) < cellulose (1.95 mmol/g) < xylose (2.26 mmol/g). Based on the gas yields from these model compounds, a possible reaction pathway of model lignocellulosic biomass decomposition in supercritical water was proposed.  相似文献   

5.
In this study, a robust model using bootstrapped aggregated neural network (BANN) was developed for optimising operating conditions of a two-stage gasification for high carbon conversion, high hydrogen yield and low CO2. The developed BAAN model predicted accurately (R2 of 0.999) the gas composition and the 95% confidence bounds for model predictions on unseen validation data indicated good prediction reliability for various feedstock. The BANN was also used to predict the optimum operating condition for hydrogen production from waste wood (1st stage temperature of 900 °C, 2nd stage temperature of 1000 °C, steam/carbon molar ratio of 5.7) to achieve high hydrogen (71–72 mol%), gas yield (98–99 wt%) and low CO2 (17–18 mol%). The optimal conditions were tested in the laboratory and the experimental results agreed well with the predicted data with an error of 0.01–0.05. Sensitivity analysis revealed that an increase in temperatures for both stages and high steam/carbon ratio favoured the H2 production and carbon conversion.  相似文献   

6.
《能源学会志》2014,87(1):35-42
It is commonly accepted that gasification of coal has a high potential for a more sustainable and clean way of coal utilization. In recent years, research and development in coal gasification areas are mainly focused on the synthetic raw gas production, raw gas cleaning and, utilization of synthesis gas for different areas such as electricity, liquid fuels and chemicals productions within the concept of poly-generation applications. The most important parameter in the design phase of the gasification process is the quality of the synthetic raw gas that depends on various parameters such as gasifier reactor itself, type of gasification agent and operational conditions. In this work, coal gasification has been investigated in a laboratory scale atmospheric pressure bubbling fluidized bed reactor, with a focus on the influence of the gasification agents on the gas composition in the synthesis raw gas. Several tests were performed at continuous coal feeding of several kg/h. Gas quality (contents in H2, CO, CO2, CH4, O2) was analyzed by using online gas analyzer through experiments. Coal was crushed to a size below 1 mm. It was found that the gas produced through experiments had a maximum energy content of 5.28 MJ/Nm3 at a bed temperature of approximately 800 °C, with the equivalence ratio at 0.23 based on air as a gasification agent for the coal feedstock. Furthermore, with the addition of steam, the yield of hydrogen increases in the synthesis gas with respect to the water–gas shift reaction. It was also found that the gas produced through experiments had a maximum energy content of 9.21 MJ/Nm3 at a bed temperature range of approximately 800–950 °C, with the equivalence ratio at 0.21 based on steam and oxygen mixtures as gasification agents for the coal feedstock. The influence of gasification agents, operational conditions of gasifier, etc. on the quality of synthetic raw gas, gas production efficiency of gasifier and coal conversion ratio are discussed in details.  相似文献   

7.
This study is focused on identifying the candidature of timothy grass as an energy crop for hydrogen-rich syngas production through supercritical water gasification. Timothy grass was gasified in supercritical water to investigate the impacts of temperature (450–650 °C), biomass-to-water ratio (1:4 and 1:8) and reaction time (15–45 min) in the pressure range of 23–25 MPa. The impacts of carbonate catalysts (e.g., Na2CO3 and K2CO3) and hydroxide catalysts (e.g., NaOH and KOH) at variable mass fractions (1–3%) were examined to maximize hydrogen yields. In the non-catalytic gasification of timothy grass, highest hydrogen (5.15 mol kg−1) and total gas yields (17.2 mol kg−1) with greater carbon gasification efficiency (33%) and lower heating value (2.21 MJ m−3) of the gas products were obtained at 650 °C with 1:8 biomass-to-water ratio for 45 min. However, KOH at 3% mass fraction maximized hydrogen and total gas yields up to 8.91 and 30.6 mol kg−1, respectively. Nevertheless, NaOH demonstrated highest carbon gasification efficiency (61.3%) and enhanced lower heating value of the gas products (4.68 MJ m−3). Timothy grass biochars were characterized through Fourier transform infrared spectroscopy, Raman spectroscopy and scanning electron microscopy to understand the behavior of the feedstock to rising temperature and reaction time. The overall findings suggest that timothy grass is a promising feedstock for hydrogen production via supercritical water gasification.  相似文献   

8.
The present study investigates the optimization of hydrogen (H2) production with in-situ catalytic adsorption (ICA) steam gasification by using a pilot-scale fluidized bed gasifier. Two important response variables i.e. H2 composition (in percent volume fraction, %) and H2 yield (in g kg−1 of biomass) are optimized with respect to five process variables such as temperature (600 °C–750 °C), steam to biomass mass ratio (1.5–2.5), adsorbent to biomass mass ratio (0.5–1.5), superficial velocity (0.15 m s−1–0.26 m s−1) and biomass particle size (350 μm–2 mm). The optimization study is carried out based on Response Surface Methodology (RSM) using Central Composite Rotatable Design (CCRD) approach. The adsorbent to biomass mass ratio is found to be the most significant process variables that influenced the H2 composition, whereas temperature and biomass particle size are found to be marginally significant. For H2 yield, temperature is the most significant process variables followed by steam to biomass mass ratio, adsorbent to biomass mass ratio and biomass particle size. The optimum process conditions are found to be at 675 °C, steam to biomass mass ratio of 2.0, adsorbent to biomass mass ratio of 1.0, superficial velocity of 0.21 m s−1 that is equivalent to 4 times the minimum fluidization velocity, and 1.0 mm–2.0 mm of biomass particle size. The theoretical response variables predicted by the developed model fit well with the experimental results.  相似文献   

9.
A fixed-bed gasifier was developed to study the effects of steam flow rate and temperature on the hydrogen production during biomass gasification at high temperature over 800 °C to 1435 °C. An optimum steam flow rate for peak of hydrogen yield was found. As temperature increases, amount of hydrogen increases first, subsequently decreases and then increases again with a maximum peak of hydrogen yield at 917 °C. In the temperatures of 1018 °C through 1435 °C post the peak hydrogen production increases with temperature. The maximum volume fraction of hydrogen and hydrogen production ratio are 60% and 76%, respectively. Chemical equilibrium calculation was also done using ASPEN software, which demonstrates that the more the steam flow rate, the lower the temperature for maximum hydrogen yield; the higher the temperature, the lower the effect of steam flow rate. The results are expected to develop high temperature gasification technology.  相似文献   

10.
The effective implementation of biomass gasification has to overcome some difficulties such as the minimization of tars. On the other hand, with a proper design of experimental conditions, biomass gasification can be directed towards the production of hydrogen. The aim of the present study was to investigate the use of dolomite as catalyst to improve tar removal and hydrogen production by a two-stage steam gasification process, using olive cake as raw material. Fixing the olive cake gasification conditions on the first reactor (900 °C, steam flow rate of 190 mg min−1, O2 flow rate of 7.5 cm3 min−1), the cracking of tars was prompted by: a) steam gasification (steam flow rate in the range 40-190 mg min−1) at 1000 °C, b) catalytic gasification, using dolomite (5% wt.). It was found that increasing steam flow rate up to 110 mg min−1 involves an increase in hydrogen fraction due to the enhancement of water gas and water gas shift reactions. Also, the influence of dolomite was studied at 800 and 900 °C in a second reactor, finding better results at 800 °C, which gave an hydrogen fraction of 0.51.  相似文献   

11.
In this research, canola meal was densified using bio-additives including alkali lignin, glycerol, and l-proline. The fuel pellet's formulation was optimized. The best fuel pellet demonstrated relaxed density and mechanical durability of 1015 kg/m3 and 99.0%, respectively. Synchrotron-based computer tomography technique indicated that lack of water in pellet formulation resulted in a twofold increase in pellet porosity. Thermogravimetric analysis showed that ignition temperature (240 °C) and burn-out temperature (640 °C) for fuel pellet were smaller than those for coal. Impacts of process parameters were evaluated on the quality of the gas product obtained from pellet's steam gasification and hydrothermal gasification. The gasification experiments showed production of untreated syngas with a suitable range of H2/CO molar ratio (1.3–1.6) using steam gasification. Hydro-thermal gasification produced a larger molar ratio of H2/CO (1.8–51.2) for the gas product. Modeling of pellet's steam gasification showed an excellent agreement with experimental results of steam gasification.  相似文献   

12.
The combination of steam reforming and HT-PEMFC has been considered as a proper set up for the efficient hydrogen production. Recycling anode off-gas is energy-saving strategy, which leads to enhance the overall efficiency of the HT-PEMFC. Thus, the recycling effect of anode off-gas on steam-reforming performance needs to be further studied. This paper, therefore, investigated that the combustion of anode off-gas recycled impacts on the steam reformer, which consists of premixed-flame burner, steam reforming and water-gas shift reactors. The temperature rising of internal catalyst was affected by lower heating value of fuels when the distance between catalyst and burner is relatively short, while by the flow rate of fuels and the steam to carbon ratio when its distance is long. The concentration of carbon monoxide was the lowest at 180 °C of LTS temperature, while NG and AOG modes showed the highest thermal efficiency at LTS temperature of 220–300 °C and 270–350 °C, respectively. The optimum condition of thermal efficiency to maximize hydrogen production was determined by steam reforming rather than water gas shift reaction. It was confirmed that the condition to obtain the highest thermal efficiency is about 650 °C of steam reforming temperature, regardless of combustion fuel and carbon monoxide reduction. The difference of hydrogen yield between upper and lower values is up to 1.5 kW as electric energy with a variation of thermal efficiency. Hydrogen yield showed the linear proportion to the thermal efficiency of steam reformer, which needs to be further increased through proper thermal management.  相似文献   

13.
Research on hydrogen production from coal gasification is mainly focused on the formation of CO and H2 from coal and water vapor in high-temperature environments. However, in the process of underground coal gasification, the water gas shift reaction of low-temperature steam will absorb a lot of heat, which makes it difficult to maintain the combustion of coal seams in the process of underground coal gasification. In order to obtain high-quality hydrogen, a pure oxygen-steam gasification process is used to improve the gasification efficiency. And as the gasification surface continues to recede, the drying, pyrolysis, gasification and combustion reactions of underground coal seams gradually occur. Direct coal gasification can't truly reflect the process of underground coal gasification. In order to simulate the hydrogen production laws of different coal types in the underground gasification process realistically, a two-step gasification process (pyrolysis of coal followed by gasification of the char) was proposed to process coal to produce hydrogen-rich gas. First, the effects of temperature and coal rank on product distribution were studied in the pyrolysis process. Then, the coal char at the final pyrolysis temperature of 900 °C was gasified with pure oxygen-steam. The results showed that, the hydrogen production of the three coal chars increased with the increase of temperature during the pyrolysis process, the hydrogen release from Inner Mongolia lignite and Xinjiang long flame coal have the same trend, and the bimodality is obvious. The hydrogen release in the first stage mainly comes from the dehydrogenation of the fat side chain, and the hydrogen release in the second stage mainly comes from the polycondensation reaction in the later stage of pyrolysis, and the pyrolysis process of coal contributes 15.81%–43.33% of hydrogen, as the coal rank increases, the hydrogen production rate gradually decreases. In the gasification process, the release of hydrogen mainly comes from the water gas shift reaction, the hydrogen output is mainly affected by the quality and carbon content of coal char. With the increase of coal rank, the hydrogen output gradually increases, mainly due to the increasing of coal coke yield and carbon content, The gasification process of coal char contributes 56.67–84.19% of hydrogen, in contrast, coal char gasification provides more hydrogen. The total effective gas output of the three coal chars is 0.53–0.81 m3/kg, the hydrogen output is 0.3–0.43 m3/kg, and the percentage of hydrogen is 53.08–56.60%. This study shows that two-step gasification under the condition of pure oxygen-steam gasification agent is an efficient energy process for hydrogen production from underground coal gasification.  相似文献   

14.
During gasification two steps take place. The first one is pyrolysis and the second one is gasification of the char that remains back after pyrolysis. The second step is slower than the first one, so this step is the limiting factor in designing fluidized beds. Kinetic data for designing fluidized beds are necessary. The paper describes gravimetric measurements directly applied to fluidized bed with large sample sizes. The samples are char of 6 mm wood pellets and 10–40 mm wood cubes in order to directly measure ”apparent kinetics”. The parameters examined in this paper are particle size, product gases (= hydrogen) in the gasification medium, type of wood and differences in CO2/steam gasification. The results are presented as Arrhenius diagrams and half-value period diagrams. The most important parameters are the temperature and product gases (hydrogen) in the gasification agent. The particle size seems to be less important for large wood particles as the measurements do not show significant differences for gasifying char of wood cubes 10–40 mm. The half-value periods for gasification of char from wood cubes (10 mm - 40 mm) with 100% steam at atmospheric pressure lie between 1000 s at 1023 K and 300 s at 1173 K. For char of 6 mm wood pellets the half-value periods lie between 1900 s at 1023 K and 250 s at 1173 K. The reaction is most likely in pore diffusion regime.  相似文献   

15.
Using Aspen Plus simulations, exergy analyses of hydrogen-rich syngas production via biomass staged-gasification are carried out for three configurations, namely, staged-gasification with pyrolysis gas combustion and char gasification (C-1), staged-gasification with pyrolysis gas reforming and char gasification (C-2), and staged-gasification with pyrolysis gas reforming and char combustion (C-3). The results show that, for the gasification and reforming processes, the exergy loss of pyrolysis gas with tar reforming is less than that of char gasification. As for the system, it is conducive to generating hydrogen by making full use of the hydrogen element (H) in biomass instead of the H in water. The benefits of C-1 are that it removes tar and produces higher yield and concentration of hydrogen. However, C-2 is capable of obtaining higher exergy efficiency and lower exergy loss per mole of H2 production. C-3 theoretically has greater process performances, but it has disadvantages in tar conversion in practical applications. The appropriate gasification temperature (TG) are in the range of 700–750 °C and the appropriate mass ratio of steam to biomass (S/B) are in the range of 0.6–0.8 for C-1 and C-3; the corresponding parameters for C-2 are in the ranges of 650–700 °C and 0.7–0.8, respectively.  相似文献   

16.
Large amount of food waste is generated from Indian kitchens and disposing off such a large amount possesses a great challenge in terms of environmental degradation and viable food waste processing technology. In this work, steam gasification was tested as an alternative viable technology to process the kitchen food waste. Preliminary study was carried out at low temperature on steam gasification in a fixed bed reactor to study the influence of steam flow rate (SFR) and temperature on the syngas yield, syngas composition, hydrogen yield. Performance parameters such as carbon conversion efficiency (CCE), and apparent thermal efficiency (ATE) are also calculated. Steam flow rates are varied from 0.125 mL/min to 0.75 mL/min and the temperatures are varied from 700 °C to 800 °C. The highest hydrogen yield is obtained at 0.5 mL/min SFR and 800 °C temperature and its highest value is 1.2 m3/kg. The highest value of performance parameters, CCE and ATE are found to be 63% and 1.8.  相似文献   

17.
《能源学会志》2020,93(5):2025-2032
Canada has the third-largest oil sand reserves in the world as a result of which, it generates considerable amounts of light gas oil and heavy gas oil through petroleum distillation. With the escalating energy demands, it has become essential to explore alternative fuel resources from biomass and petrochemical residues. This study explores the potential of supercritical water gasification to transform light and heavy gas oils to hydrogen-rich syngas through the optimization of process conditions such as temperature (375–675 °C), feed concentration (20–35 wt%) and reaction time (30–75 min). Nickel-supported functionalized carbon nanotubes (10%Ni/FCNT) were synthesized for application in catalytic supercritical water gasification. The functionalization of carbon nanotubes resulted in an increase in their surface area from 108 m2/g (in pristine CNT) to 127 m2/g (in FCNT) and 122 m2/g (in 10%Ni/FCNT). The impregnation of catalytic nickel particles onto carbon nanotubes was confirmed through X-ray diffraction (XDR) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). Fourier-transform infrared (FTIR) spectroscopy of both gas oils revealed the presence of aliphatics, alkyl-aryl ethers and sulfur-containing compounds among several other aromatics. Light gas oil revealed higher hydrogen yields of 3.32 mol/kg compared to that of heavy gas oil (2.79 mol/kg) at optimal process conditions, i.e. 675 °C and 75 min, 20 wt% feed concentration. However, 10%Ni/FCNT enhanced hydrogen yields (4.46 mol/kg), total gas yield (9.22 mol/kg), hydrogen selectivity (94%) and lower heating value (1685 MJ/kg) of product gases obtained from light gas oil in contrast to heavy gas oil. This study indicates a tremendous potential of gas oils for hydrogen generation via hydrothermal gasification.  相似文献   

18.
An incremental thermodynamic equilibrium model has been developed for the chemical reactions driving a clean, hydrogen producing iron/iron oxide looping cycle. The model approximates a well-mixed reactor with continuous reactant gas flow through a stationary solid matrix, where the gas residence time is long compared to time constants associated with chemical kinetics and species transport. The model, which computes the theoretical limit for steam-to-hydrogen conversion, has been experimentally validated for the oxidation reaction using an externally heated, 21 mm inner diameter, tubular fluidized bed reactor. Experiments were carried out at 660 and 960 °C with steam flow rates ranging from 0.9 to 3.5 g/min. For small flow rates, i.e., for long residence times, the experimentally observed cumulative steam-to-hydrogen conversion approaches the theoretically predicted conversion. At a 960 °C operating temperature, the measured hydrogen yield approaches the theoretical limit (experimental yields are always within 50% of the theoretical limit), and the yield is insensitive to variations in the steam flow rate. In contrast, the measured hydrogen yield deviates significantly from the theoretical limit at a 660 °C operating temperature, and strong variations in hydrogen yield are observed with variations in steam flow rate. This observation suggests that the reaction kinetics are significantly slower at lower temperature, and the model assumption is not satisfied.  相似文献   

19.
Municipal solid waste steam gasification and direct melting system is proposed in this study for H2 production and ash melting simultaneously. Part of the H2 generated in gasification is extracted for combustion with pure oxygen in the melting zone to provide the energy necessary for auto-thermal operation. A simulation model is developed with Aspen Plus to investigate the performance and optimum conditions of the system. For the feedstock with a lower heating value of 18.91 MJ/kg used in this study, 39.8% of the generated H2 needs to be extracted to maintain the heat balance of the system at the gasification temperature of 900 °C, melting temperature of 1400 °C, and S/M of 1. The net H2 yield is ~77.3 kg/t-MSW with a net cold gas efficiency of 49.1% under the same operating condition. An optimum operation condition for T (850–1000 °C) and S/M (0.6–1.0) is determined considering the balance between H2 production ability and the auto-thermal energy balance.  相似文献   

20.
Compared with the conventional thermal drying process, hydrothermal carbonization (HTC) can reduce the energy cost of water removal from sewage sludge prior to its steam gasification. However, less attention is paid on the interactions between HTC and gasification. In this study, the thermodynamic evaluation on hydrochar gasification performance under different operating conditions including HTC duration (τ), HTC temperature (THTC), gasification temperature (Tg), and steam/hydrochar mass ratio (S/C ratio) is performed. Two indicators including carbon conversion rate (CC) and cold gas efficiency (CGE) are used to assess the gasification performance. The results show that elevating both gasification temperature and S/C ratio can enhance the H2 production, which also result in the increase of CC and CGE. The content and gasification activity of fixed carbon increase under moderate HTC duration and temperature, favoring the H2 formation despite of the apparent loss of volatiles species in the hydrochar. Longer HTC duration or higher HTC temperature declines the H2 production due to the sharp reduction of carboxyl and hydroxyl groups, weakening water gas reaction and on-site reforming reaction of tar occurred on the hydrochar surface. In terms of the values of CC = 93.9% and CGE = 64.38%, the optimum HTC conditions of τ = 30min and THTC = 200 °C can be determined. The data provided here favor guiding HTC treatment of sewage sludge targeting gasification and thus promoting the development of this promising waste-to-energy technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号