首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a problem of utilization of a large amount of organic waste in the agro-industrial complex. Most of the waste is generated on livestock farms (56%) and crop production (35.6%). Centralized biogas plants are a good solution for efficient processing of agricultural waste and biofuel production. An analysis of the possibilities of cow manure utilizing and dry biomass of amaranth with the subsequent hydrogen production was implemented for Tatarstan Republic. The diagram of five large facilities utilizing waste from 7 to 10 districts included in the region is introduced.The diagram of steam catalytic conversion of biogas is specified. The introduced hydrogen production scheme includes: collection of plant waste and manure of livestock complexes for centralized recycling (the optimal mixture of dry biomass of Amaranthus retroflexus L. leaves and cow manure for organic dry matter is 1:1.5); mixture preparation and ultrasonic treatment at a frequency of 22 kHz and an exposure intensity of 10 W/cm2; anaerobic digestion in the mesophilic mode at a temperature of 310 K, the hydraulic retention time is 12 days; the compressor supplying the resulting biogas into the gasholder for intermediate storage; purification of biogas from carbon dioxide, hydrogen sulfide and other impurities in the scrubber; steam methane reforming: the biomethane is compressed by a compressor to a pressure of 15 atm., then fed to the reformer, heated, mixed with steam in the ratio H2O/CH4 = 2.5 and subjected to conversion at a temperature of 1073 K and a pressure of 1 atm., before exiting, the resulting gas is cooled to 573 K; the catalytic reactor for carrying out a water vapor conversion reaction in which a mixture of carbon monoxide and steam is converted, the products are hydrogen and carbon dioxide; purification of the obtained hydrogen to a purity of 99.99% vol. In the short-cycle adsorption system; hydrogen supply to the consumer. It is possible to utilize of 4.4 million tons of waste annually, and also to produce 107,341 kg/day of hydrogen with a purity of 99.99% by volume.  相似文献   

2.
Blue mussels and reeds were explored as a new biomass type in the Kalmar County of Sweden to improve renewable transport fuel production in the form of biogas. Anaerobic digestion of blue mussels and reeds was performed at a laboratory-scale to evaluate biogas production in a two-stage dry digestion system. The two-stage system consisted of a leach bed reactor and an upflow anaerobic sludge blanket (UASB) reactor. The two-stage system was efficient for the digestion of blue mussels, including shells, and a methane yield of 0.33 m3/kg volatile solids (VS) was obtained. The meat fraction of blue mussels was easily solubilised in the leach bed reactor and the soluble organic materials were rapidly converted in the UASB reactor from which 68% of the methane was produced. However, the digestion of mussels including shells gave low production capacity, which may result in a less economically viable biogas process. A low methane potential, 0.22 m3/kg VS, was obtained in the anaerobic two-stage digestion of reeds after 107 days; however, it was comparable to similar types of biomass, such as straw. About 80% of the methane was produced in the leach bed reactor. Hence, only a leach bed reactor (dry digestion) may be needed to digest reed. The two-stage anaerobic digestion of blue mussels and reeds resulted in an energy potential of 16.6 and 10.7 GWh/year, respectively, from the estimated harvest amounts. Two-stage anaerobic digestion of new organic materials such as blue mussels and reeds can be a promising biomass resource as land-based biomass start to be limited and conflict with food resources can be avoided.  相似文献   

3.
To construct a system for the effective hydrogen production from food waste, the conditions of anaerobic digestion and biogas reforming have been investigated and optimized. The type of agitator and reactor shape affect the performance of anaerobic digestion reactors. Reactors with a cubical shape and hydrofoil agitator exhibit high performance due to the enhanced axial flow and turbulence as confirmed by simulation of computational fluid dynamics. The stability of an optimized anaerobic digestion reactor has been tested for 60 days. As a result, 84 L of biogas is produced from 1 kg of food waste. Reaction conditions, such as reaction temperature and steam/methane ratio, affect the biogas steam reforming reaction. The reactant conversions, product yields, and hydrogen production are influenced by reaction conditions. The optimized reaction conditions include a reaction temperature of 700 °C and H2O/CH4 ratio of 1.0. Under these conditions, hydrogen can be produced via steam reforming of biogas generated from a two-stage anaerobic digestion reactor for 25 h without significant deactivation and fluctuation.  相似文献   

4.
Biogas is a renewable biofuel that contains a lot of CH4 and CO2. Biogas can be used to produce heat and electric power while reducing CH4, one of greenhouse gas emissions. As a result, it has been getting increasing academic attention. There are some application ways of biogas; biogas can produce hydrogen to feed a fuel cell by reforming process. Urea is also a hydrogen carrier and could produce hydrogen by steam reforming. This study then employes steam reforming of biogas and compares hydrogen-rich syngas production and carbon dioxide with various methane concentrations using steam and aqueous urea solution (AUS) by Thermodynamic analysis. The results show that the utilization of AUS as a replacement for steam enriches the production of H2 and CO and has a slight CO2 rise compared with pure biogas steam reforming at a temperature higher than 800 °C. However, CO2 formation is less than the initial CO2 in biogas. At the reaction temperature of 700 °C, carbon formation does not occur in the reforming process for steam/biogas ratios higher than 2. These conditions led to the highest H2, CO production, and reforming efficiency (about 125%). The results can be used as operation data for systems that combine biogas reforming and applied to solid oxide fuel cell (SOFC), which usually operates between 700 °C to 900 °C to generate electric power in the future.  相似文献   

5.
There is increasing international interest in developing low carbon renewable energy technologies. Biomass is increasingly being utilized as an energy source throughout the world. Several modern technologies have been developed that convert biomass to bioenergy. Anaerobic digestion is a mature energy technology for converting biomass to biogas, which is a renewable primary energy source. Biogas is a robust fuel that can be used to supply heat, electricity, process steam and methanol. There are vast biomass resources in Zimbabwe that have good potential for biogas production by anaerobic digestion. However, anaerobic digestion is not being optimally used as a biomass conversion technology in the country. This paper presents an overview of biogas production in Zimbabwe and outlines technical options that can be utilized to optimize biogas production by anaerobic digestion in the country.  相似文献   

6.
A two-stage anaerobic digestion process intended for biohydrogen and bio-methane combined production from organic fraction of municipal solid wastes was investigated. In thermophilic conditions blocking of methanogenesis at the first stage of the anaerobic fermentation was achieved at pH 9.0. Cumulative hydrogen production made 82.5 l/kg volatile solids. Pretreatment of organic fraction of municipal solid wastes and exploitation of mixed cultures of anaerobic thermophilic cellulolytic and saccharolytic bacteria of Clostridia sp resulted in the increase of hydrogen cumulative production up to 104 l/kg volatile solids. Content of methane in biohydrogen didn’t exceed 0.1%. Cumulative bio-methane production made 520 l/kg volatile solids. Methane percentage in produced biogas was 78.6%. Comparison of energy data for two-stage anaerobic digestion with those for solely methane production shows the increase in energy recovery from biodegradable fraction of municipal solid wastes. Results obtained make a foolproof basis for the development of cost-effective technological process providing hydrogen and methane combined production from solid organic wastes. Technology can be implemented at large scale biogas plants improving economical and ecological characteristics of the overall process.  相似文献   

7.
In this paper are presented the results of the investigation on optimal process operational conditions of thermophilic dark fermentation and anaerobic digestion of food waste, testing a long-term run, applying an organic loading rate of 16.3 kgTVS/m3d in the first phase and 4.8 kgTVS/m3d in the second phase. The hydraulic retention times (HRTs) were maintained at 3.3 days and 12.6 days, respectively, for the first and second phase. Recirculation of anaerobic digested sludge, after a mild solid separation, was applied to the dark fermentation reactor in order to control the pH in the optimal hydrogen production range of 5–6. It was confirmed the possibility to obtain a stable hydrogen production, without using external chemicals for pH control, in a long-term test, with a specific hydrogen production of 66.7 l per kg of total volatile solid (TVS) fed and a specific biogas production in the second phase of 0.72 m3 per kgTVS fed; the produced biogas presented a typical composition with a stable presence of hydrogen and methane in the biogas mixture around 6 and 58%, respectively, carbon dioxide being the rest.  相似文献   

8.
This paper deals with the experimental analysis of the performance and degradation issues of a Ni-based anode-supported solid oxide fuel cell fed by a methane-free biogas from dark-anaerobic digestion of wastes by pastry and fruit shops. The biogas is produced by means of an innovative process where the biomass is fermented with a pre-treated bacteria inoculum (Clostridia) able to completely inhibit the methanization step during the fermentation process and to produce a H2/CO2 mixture instead of conventional CH4/CO2 anaerobic digested gas (bio-methane). The proposed biogas production route leads to a biogas composition which avoids the need of introducing a reformer agent into or before the SOFC anode in order to reformate it.In order to analyse the complete behaviour of a SOFC with the bio-hydrogen fuel, an experimental session with several H2/CO2 synthetic mixtures was performed on an anode-supported solid oxide fuel cell with a Ni-based anode. It was found that side reactions occur with such mixtures in the typical thermodynamic conditions of SOFCs (650–800 °C), which have an effect especially at high currents, due to the shift to a mixture consisting of hydrogen, carbon monoxide, carbon dioxide and water. However, cells operated with acceptable performance and carbon deposits (typical of a traditional hydrocarbon-containing biogas) were avoided after 50 h of cell operation even at 650 °C. Experiments were also performed with traditional bio-methane from anaerobic digestion with 60/40 vol% of composition. It was found that the cell performance dropped after few hours of operation due to the formation of carbon deposits.A short-term test with the real as-produced biogas was also successfully performed. The cell showed an acceptable power output (at 800 °C, 0.35 W cm−2 with biogas, versus 0.55 W cm−2 with H2) although a huge quantity of sulphur was present in the feeding fuel (hydrogen sulphide at 103 ppm and mercaptans up to 10 ppm). Therefore, it was demonstrated the interest relying on a sustainable biomass processing which produces a biogas which can be directly fed to SOFC using traditional anode materials and avoiding the reformer component since the methane-free mixture is already safe for carbon deposition.  相似文献   

9.
Anaerobic co-digestion of food waste, cow dung, and sludge solution is experimented in the presence of calcium peroxide (CaO2) as the catalyst to produce hydrogen and methane as a source of renewable energy. The substrate to inoculum ratios (v/v) of 1:1(S1), 1:2(S2), 1:3(S3), 1:4(S4) and 1:5(S5) are investigated in separate fermentative and methanogenic reactors. The result from the fermentative reactors indicate maximum hydrogen concentration of 26.34% with cumulative yield of 114.1 mL/g total solid (TS) in S3 compared to the other samples. Methanogenic reaction shows the highest methane concentration of 54.13% in S3. The highest daily (average) and cumulative biogas yield of 5.36 mL/g TS and 201.9 mL/g TS respectively are identified in S3. A maximum carbon dioxide concentration of 63.11% is found in S1. Overall, the substrate to inoculum ratio of 1:3 is spotted to be optimal for effective hydrogen and methane production during the anaerobic co-digestion process.  相似文献   

10.
Biogas produced during anaerobic decomposition of plant and animal wastes consists of high concentrations of methane (CH4), carbon dioxide (CO2) and traces of hydrogen sulfide (H2S). The primary focus of this research was on investigating the effect of a major impurity (i.e., H2S) on a commercial methane reforming catalyst during hydrogen production. The effect of temperature on CH4 and CO2 conversions was studied at three temperatures (650, 750 and 850 °C) during catalytic biogas reforming. The experimental CH4 and CO2 conversions thus obtained were found to follow a trend similar to the simulated conversions predicted using ASPEN plus. The gas compositions at thermodynamic equilibrium were estimated as a function of temperature to understand the intermediate reactions taking place during biogas dry reforming. The exit gas concentrations as a function of temperature during catalytic reforming also followed a trend similar to that predicted by the model. Finally, catalytic reforming experiments were carried out using three different H2S concentrations (0.5, 1.0 and 1.5 mol%). The study found that even with the introduction of small amount of H2S (0.5 mol%), the CH4 and CO2 conversions dropped to about 20% each as compared to 65% and 85%, respectively in the absence of H2S.  相似文献   

11.
The paper aims to investigate the steam reforming of biogas in an industrial-scale reformer for hydrogen production. A non-isothermal one dimensional reactor model has been constituted by using mass, momentum and energy balances. The model equations have been solved using MATLAB software. The developed model has been validated with the available modeling studies on industrial steam reforming of methane as well as with the those on lab-scale steam reforming of biogas. It demonstrates excellent agreement with them. Effect of change in biogas compositions on the performance of industrial steam reformer has been investigated in terms of methane conversion, yields of hydrogen and carbon monoxide, product gas compositions, reactor temperature and total pressure. For this, compositions of biogas (CH4/CO2 = 40/60 to 80/20), S/C ratio, reformer feed temperature and heat flux have been varied. Preferable feed conditions to the reformer are total molar feed rate of 21 kmol/h, steam to methane ratio of 4.0, temperature of 973 K and pressure of 25 bar. Under these conditions, industrial reformer fed with biogas, provides methane conversion (93.08–85.65%) and hydrogen yield (1.02–2.28), that are close to thermodynamic equilibrium condition.  相似文献   

12.
Considerable amounts of hydrogen are produced from fossil fuels. In recent years, natural gas and biogas have received attention as important feedstocks for hydrogen production, because methane, their main component, is hydrogen rich and readily available. Methane steam reforming is the major industrial route for hydrogen production, but requires high temperature due to endothermic nature of the reaction. This report presents a new green technology for the efficient and ecological production of hydrogen from methane. A humidified methane was electrolyzed to hydrogen and carbon dioxide at low onset cell voltages (ca. 0.3–0.4 V), depending on the temperature (150–250 °C). Almost all currents were used for the production of hydrogen and carbon dioxide. Hydroxyl radicals generated from water vapor during the electrolysis played an important role as an active oxygen for the methane oxidation reaction at the anode. This is the first report on the production of hydrogen from methane at both low temperatures and voltages.  相似文献   

13.
Biogas generation from the latent energy in biomass is one of the most attractive renewable energy sources. This can be attributed to the environmental friendly nature of the process and its less energy requirements. This article reviews the anaerobic digestion of biomass (livestock manure and crop residues) for biogas and methane production as a source of renewable energy. Furthermore, this study investigates the enhancement of biogas and methane production using light and laser radiations. The laser radiation accelerates bacterial division and growth, where this process is termed as “photobiostimulation.” Additionally, laser radiation photoactivates the inactive enzymes. The results of this literature review showed that the irradiation of methanogenic bacteria with laser sources increased the biogas production by one and a half fold the traditional method of biogas production. The simultaneous irradiation of both nanomaterials and methanogenic bacteria using laser radiation increased the biogas volume by twofolds the biogas volume resulted from the traditional method of biogas production.  相似文献   

14.
Greenhouse gases, carbon dioxide and methane are utilized in the production of hydrogen through carbon dioxide reforming of methane catalyzed by Ni-Co/MgO-ZrO2 catalyst. Design of Experiments (DOE) was used to study the effects of process variables such as, carbon dioxide to methane ratios (1-5), gas hourly space velocity (8400-200,000 mL/g/h), oxygen concentration in the feed (3-8 mol%) and reaction temperature (700-800 °C) over methane conversion and yield of hydrogen. The ANOVA analysis indicated that the effect of each process variable was significant to its respective responses in the proposed quadratic model. The response surface methodology (RSM) was used to find the optimum value of the process variables by maximizing the hydrogen yield in the process model. The optimum space velocity as 145,190 mL/g/h at reaction temperature 749 °C with carbon dioxide to methane ratio of 3 and 7 mol% of oxygen in the feed gave 88 mol% of CH4 conversion and 86 mol% of hydrogen yield, respectively. The experiments were run at the optimum condition gave 87.7 mol% methane conversion and 85.5 mol% of hydrogen yield, which were in good agreement with the simulated values obtained from the model. The catalyst stability and its regeneration characteristics were studied at the optimum condition by monitoring methane conversion and hydrogen yield with time on stream.  相似文献   

15.
The purpose of the current study is to identify the potential of energy-efficient hydrogen (H2) production from date seeds as biomass via steam gasification process along with heat integration in Gulf countries. A reaction kinetics model has been established for steam gasification with in-situ carbon dioxide (CO2) capture of date seeds using MATLAB software. The kinetics of reactions involved in the gasification process was calculated using the optimization parameters fitting approach. The heat integration model has been developed via mixed integer nonlinear programming (MINLP) in MATLAB. In the parametric study, temperature and steam/biomass ratio considered their impact on syngas composition and energy recovery. Results showed that both variables have a strong positive effect on H2 production and depicted maximum production of 68 mol% at a temperature of 750 °C with steam/biomass ratio of 1.2. Methane (CH4) and CO2 production were low in the product gas, which showed the activity of water gas shift reaction, methanation reaction, and carbonation reaction. Utilization of waste heat via process heat integration within the system reduced system's external heat load. More than 70% of energy recovered, which could be utilized for gasification and steam production. Energy analysis and process heat integration proved a prospective approach for energy-efficient and sustainable hydrogen production from date seeds.  相似文献   

16.
In this work biogas valorization – a renewable resource – for synthesis gas and hydrogen generation through dry reforming or tri-reforming (TR) is studied. Several Ni-based catalysts and a bimetallic Rh–Ni catalyst supported on magnesia or alumina modified with oxides like CeO2 and ZrO2 were used. For all the experiments, a synthetic biogas (molar composition: 60% CH4 and 40% CO2) was fed and the catalytic activities were measured in two different experimental facilities: a bench-scale fixed bed reactor system and a microreactor reaction system, at 1073 K and atmospheric pressure. Those catalysts which achieved high activity and stability in the fixed-bed reactor were impregnated in a microreactor to explore possible process intensification. For TR processes, different steam to carbon ratios, S/C, from 1.0 to 3.0, and O2/CH4 ratios of 0.25 and 0.50 were used. The high methane and carbon dioxide conversions reached in the fixed bed reactor were also achieved in the microreactor operating at much higher WHSV. In addition, process intensification improved catalysts stability. Physicochemical characterization of catalyst samples by ICP-OES, N2 physisorption, H2 chemisorption, TPR, SEM and XPS showed differences in chemical state, metal–support interactions, average crystallite sizes and redox properties of nickel and rhodium metal particles, indicating the importance of the morphological and surface properties of metal phases in driving the reforming activity.  相似文献   

17.
Multi-energy systems that combine different energy sources and carriers to improve the overall technical, economic, and environmental performance can boost the energy transition. In this paper we posit an innovative multi-energy system for green hydrogen production that achieves negative carbon emissions by combining bio-fuel membrane-integrated steam reforming and renewable electricity electrolysis. The system produces green hydrogen and carbon dioxide, both at high purity. We use thermo-chemical models to determine the system performance and optimal working parameters. Specifically, we focus on its ability to achieve negative carbon emissions.The results show that in optimal operating conditions the system can capture up to 14.1 g of CO2 per MJ of stored hydrogen and achieves up to 70% storage efficiency. Therefore, we prove that a multi-energy system may reach the same efficiency of an average electrolyzer while implementing carbon capture. In the same optimal operating conditions the system converts 7.8 kg of biogas in 1 kg of hydrogen using 3.2 kg of oxygen coming from the production of 6.4 kg of hydrogen through the electrolyzer. With such ratios we estimate that the conversion of all the biogas produced in Europe with our system, could result in the installation of additional dedicated 800 GWp - 1280 GWp of photovoltaic power, or of 266 GWp - 532 GWp of wind power, without affecting the distribution grid and covering yearly the 45% of the worldwide hydrogen demand while removing from the atmosphere more than 2% of the European carbon dioxide emissions.  相似文献   

18.
The marine algae are considered an important biomass source; however, their utilization as energy source is still low around the world. The technical feasibility of marine algae utilization as a source of renewable energy was studied to laboratory scale. The anaerobic digestion of Macrocystis pyrifera, Durvillea antarctica and their blend 1:1 (w/w) was evaluated in a two-phase anaerobic digestion system, which consisted of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic filter (UAF). The results show that 70% of the total biogas produced in the system was generated in the UAF, and both algae species have similar biogas productions of 180.4(±1.5) mL g−1 dry algae d−1, with a methane concentration around 65%. The same methane content was observed in biogas yield of algae blend; however, a lower biogas yield was obtained. In conclusion, either algae species or their blend can be utilized to produce methane gas in a two-phase digestion system.  相似文献   

19.
Municipal biomass waste is regarded as new available energy source, although it could cause serious environmental pollution. Generally, biogas recovery by anaerobic digestion was seen as an ideal way to treat biomass waste. Different types of biomass waste have different biogas production potential. In this paper, cow manure, pig manure, municipal sewage sludge, fruit/vegetable waste, and food waste were chosen as typical municipal biomass waste. In addition, hydrothermal pretreatment was used to accelerate digestion and increase biogas production. Biochemical methane potential (BMP) test was used to evaluate biogas production for raw biomass and hydrothermal treated waste. Raw materials of fruit/vegetable and food waste show higher methane production than that of cow manure, pig manure, and municipal sewage sludge. After hydrothermal pretreatment at typical condition (170 °C at 1 h), the biogas production of pig manure, cow manure, fruit/vegetable waste, and municipal sewage sludge increased by 7.8, 13.3, 18.5, and 67.8% respectively. While, for treated food waste, the biogas decrease by 3.4%. The methane yield of pig manure, fruit/vegetable waste, and municipal sewage sludge increased by 14.6, 16.1, and 65.8%, respectively. While, for treated cow manure and food waste, the methane decrease by 6.9% and 7.5%.  相似文献   

20.
Considerable research is currently being devoted to seeking alternative fuels to comply with transportation needs while reducing the environmental impact of this sector. Within the transport activity sector, on road vehicles and agricultural machinery require around 2 Mtoe energy in France. The anaerobic digestion of farm waste could roughly cover these needs. This paper aims to study the environmental and energy interest of this short power supply path. An ideal biogas production system has been built up from the average characteristics of current rural biogas plants in France. Pollutant emissions, energy demands and production are assessed for various scenarios in order to produce methane for dual fuel engines. Life cycle assessment (LCA) is used to evaluate the environmental impact of dual fuel agricultural machines, compared to diesel engines. The energy balance is always in disfavour of biogas fuel, whereas LCA energy indicators indicate a benefit for biogas production. This gap is related to the way in which the input of biomass energy is handled: in conventional biofuel LCA, this energy is not taken into account. A carbon balance is then presented to discuss the impact of biogas on climate change. Dual fuel engines were found to be interesting for their small impact. We also show, however, how the biogenic carbon assumption and the choice of allocation for the avoided methane emissions of anaerobic digestion are crucial in quantifying CO2 savings. Other environmental issues of biogas fuel were examined. Results indicate that are management and green electricity are the key points for a sustainable biogas fuel. It is concluded that biofuel environmental damage is reduced if energy needs during biofuel production are covered by the production process itself. As agricultural equipment is used during the biofuel production process, this implies that a high substitution rate should be used for this equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号