共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2019,44(23):12163-12175
With an alarming enlargement in vehicular density, there is a threat to the environment due to toxic emissions and depleting fossil fuel reserves across the globe. This has led to the perpetual exploration of clean energy resources to establish sustainable transportation. Researchers are continuously looking for the fuels with clean emission without compromising much on vehicular performance characteristics which has already been set by efficient diesel engines. Hydrogen seems to be a promising alternative fuel for its clean combustion, recyclability and enhanced engine performance. However, problems like high NOx emissions is seen as an exclusive threat to hydrogen fuelled engines. Exhaust gas recirculation (EGR), on the other hand, is known to overcome the aforementioned problem. Therefore, this study is conducted to study the combined effect of hydrogen addition and EGR on the dual fuelled compression ignition engine on a single cylinder diesel engine modified to incorporate manifold hydrogen injection and controlled EGR. The experiments are conducted for 25%, 50%, 75% and 100% loads with the hydrogen energy share (HES) of 0%, 10% and 30%. The EGR rate is controlled between 0%, 5% and 10%. With no substantial decrement in engine's brake thermal efficiency, high gains in terms of emissions are observed due to synergy between hydrogen addition and EGR. The cumulative reduction of 38.4%, 27.4%, 33.4%, 32.3% and 20% with 30% HES and 10% EGR is observed for NOx, CO2, CO, THC and PM, respectively. Hence, the combination of hydrogen addition and EGR is observed to be advantageous for overall emission reduction. 相似文献
2.
《International Journal of Hydrogen Energy》2023,48(70):27394-27407
The urge for cleaner and greener sources of energy is rising day by day. Developed countries are already in process of shifting their energy needs from conventional sources to non-conventional/renewable/green sources of energy. These developed countries are also trying to incorporate developing countries to join the battle against global warming and pollution. Examples, of some non-conventional sources of energy are nuclear energy, wind energy etc. One of such cleaner energy source is hydrogen. The high calorific value, availability in abundance and cleaner nature of hydrogen makes it an appropriate substitute for conventional source of energy. An engine using gaseous hydrogen is in the process of being developed. This may revolutionize the battle against pollution and global warming. Use of hydrogen in a diesel engine working on dual-fuel mode has been the interest of many researchers. However utilization of hydrogen fuel changes the ignition delay, combustion duration, peak mean temperature, peak pressure and other combustion parameters change. In the present work, such research works are examined and analyzed in detail. It is also shown, amount of inducted hydrogen dictates many engine parameters such as engine power, torque etc. a separate section is dedicated to study different emissions from the improvised engine. Lastly, it will be clear from the discussion that introduction of gaseous hydrogen to a diesel engine working on dual fuel mode will have optimistic effect on environment. 相似文献
3.
The effects of biodiesel (rapeseed methyl ester, RME) and different diesel/RME blends on the diesel engine NOx emissions, smoke, fuel consumption, engine efficiency, cylinder pressure and net heat release rate are analysed and presented. The combustion of RME as pure fuel or blended with diesel in an unmodified engine results in advanced combustion, reduced ignition delay and increased heat release rate in the initial uncontrolled premixed combustion phase. The increased in-cylinder pressure and temperature lead to increased NOx emissions while the more advanced combustion assists in the reduction of smoke compared to pure diesel combustion. The lower calorific value of RME results in increased fuel consumption but the engine thermal efficiency is not affected significantly. When similar percentages (% by volume) of exhaust gas recirculation (EGR) are used in the cases of diesel and RME, NOx emissions are reduced to similar values, but the smoke emissions are significantly lower in the case of RME. The retardation of the injection timing in the case of pure RME and 50/50 (by volume) blend with diesel results in further reduction of NOx at a cost of small increases of smoke and fuel consumption. 相似文献
4.
The combustion of hydrogen–diesel blend fuel was investigated under simulated direct injection (DI) diesel engine conditions. The investigation presented in this paper concerns numerical analysis of neat diesel combustion mode and hydrogen enriched diesel combustion in a compression ignition (CI) engine. The parameters varied in this simulation included: H2/diesel blend fuel ratio, engine speed, and air/fuel ratio. The study on the simultaneous combustion of hydrogen and diesel fuel was conducted with various hydrogen doses in the range from 0.05% to 50% (by volume) for different engine speed from 1000 – 4000 rpm and air/fuel ratios (A/F) varies from 10 – 80. The results show that, applying hydrogen as an extra fuel, which can be added to diesel fuel in the (CI) engine results in improved engine performance and reduce emissions compared to the case of neat diesel operation because this measure approaches the combustion process to constant volume. Moreover, small amounts of hydrogen when added to a diesel engine shorten the diesel ignition lag and, in this way, decrease the rate of pressure rise which provides better conditions for soft run of the engine. Comparative results are given for various hydrogen/diesel ratio, engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions. 相似文献
5.
吴小江 《小型内燃机与摩托车》2003,32(2):29-31
作者研制开发了混合气双燃料发动机的电控系统,发动机起动和怠速时只燃用柴油;当转速超过某设定值,电控系统便发出指令限制柴油的喷油量,天然气就经混合器进入气缸参与燃烧,柴油只起引燃作用,通过控制天然气供给量的大小米改变负荷。结果表明,与原机相比,它显著降低了碳烟及NOx的排放。 相似文献
6.
《International Journal of Hydrogen Energy》2020,45(15):9052-9063
Biogas valorization as fuel for internal combustion engines is one of the alternative fuels, which could be an interesting way to cope the fossil fuel depletion and the current environmental degradation. In this circumstance, an experimental investigation is achieved on a single cylinder DI diesel engine running under dual fuel mode with a focus on the improvement of biogas/diesel fuel combustion by hydrogen enrichment. In the present investigation, the mixture of biogas, containing 70% CH4 and 30% CO2, is blended with the desired amount of H2 (up to 10, 15 and 20% by volume) by using MTI 200 analytical instrument gas chromatograph, which flow thereafter towards the engine intake manifold and mix with the intake air. Depending on engine load conditions, the volumetric composition of the inducted gaseous fraction is 20–50% biogas, 2–10% H2 and 45–78% air. Near the end of the compression stroke, a small amount of diesel pilot fuel is injected to initiate the combustion of the gas–air mixture. Firstly, the engine was tested on conventional diesel mode (baseline case) and then under dual fuel mode using the biogas. Consequently, hydrogen has partially enriched the biogas. Combustion characteristics, performance parameters and pollutant emissions were investigated in-depth and compared. The results have shown that biogas enriched with 20% H2 leads to 20% decrease of methane content in the overall exhaust emissions, associated with an improvement in engine performance. The emission levels of unburned hydrocarbon (UHC) and carbon monoxide (CO) are decreased up to 25% and 30% respectively. When the equivalence ratio is increased, a supplement decrease in UHC and CO emissions is achieved up to 28% and 30% respectively when loading the engine at 60%. 相似文献
7.
This paper aims at studying the effect of hydrogen induction on engine performance, emission and combustion behaviour of a diesel engine fuelled with the emulsion of used palm oil (called as WCO-waste cooking oil) as pilot fuel and hydrogen as primary fuel. A single cylinder water-cooled direct injection diesel engine was tested at 100% and 40% loads. Results were compared with neat diesel, neat WCO and WCO emulsion at both loads in single fuel operation. WCO emulsion in single fuel mode indicated improvement in performance and reduction in all emissions as compared to neat WCO. Dual fuel operation with hydrogen induction further reduced the emissions of smoke HC and CO with WCO as pilot fuel at all power outputs. However, hydrogen induction resulted in reduced thermal efficiency at 40% load. WCO emulsion showed higher ignition delay as compared to neat WCO. Dual fuel operation with hydrogen induction increased the ignition delay further. Heat release pattern showed higher premixed combustion rate with hydrogen induction mainly at high power outputs. Premixed combustion rate became very high at higher rates of hydrogen admission mainly at high power output. In general, hydrogen induction showed superior performance at high power output and inferior performance at low power output with WCO emulsion as injected fuel. 相似文献
8.
E. Sukjit J.M. Herreros K.D. Dearn A. Tsolakis K. Theinnoi 《International Journal of Hydrogen Energy》2013
Research suggests that there is a dramatic reduction in CO and particulate matter (PM) emissions when butanol is blended with biodiesel derived from rapeseed oil (RME), but a small increase in THC emissions. The addition of hydrogen as a combustion enhancer can be used to counteract the increase in THC emissions seen with the butanol fuel blends and further reduce CO and PM emissions. The emission benefits with hydrogen addition were shown to be further improved for RME-butanol fuel blends. The penalty for using hydrogen is an increase in NOx emissions due to the increase in NO2 formation during combustion, but this is expected to have significant benefits in the function of aftertreatment systems. In this study, it is shown that the increase in engine-out NOx emissions can be effectively controlled through exhaust gas recirculation (EGR) without an excessive PM penalty thanks to the low PM concentration in the EGR (with an impeding PM recirculation penalty). 相似文献
9.
Miqdam Tariq Chaichan 《International Journal of Hydrogen Energy》2018,43(10):5415-5435
Hydrogen is considered as an excellent energy carrier and can be used in diesel engines that operate in dual fuel mode. Many studies have shown that biodiesel, which is sustainable, clean, and safe, a good alternative to fossil fuel. However, tests have confirmed that using biodiesel or hydrogen as a fuel or added fuel in compression ignition engines increases NOx concentrations. Cooled or hot exhaust gas recirculation (EGR) effectively controls the NOx outflows of diesel engines. However, this technique is restricted by high particulate matter PM emissions and the low thermal efficiency of diesel engines.In this study, gaseous hydrogen was added to the intake manifold of a diesel engine that uses biodiesel fuel as pilot fuel. The investigation was conducted under heavy-EGR conditions. An EGR system was modified to achieve the highest possible control on the EGR ratio and temperature. Hot EGR was recirculated directly from the engine exhaust to the intake manifold. A heat exchanger was utilized to maintain the temperature of the cooled EGR at 25 °C.The supplied hydrogen increased NOx concentrations in the exhaust gas emissions and high EGR rates reduced the brake thermal efficiency. The reduction in NOx emissions depended on the added hydrogen and the EGR ratios when compared with pure diesel combustion. Adding hydrogen to significant amounts of recycled exhaust gas reduced the CO, PM, and unburned hydrocarbon (HC) emissions significantly. Results showed that using hydrogen and biodiesel increases engine noise, which is reduced by adding high levels of EGR. 相似文献
10.
《能源学会志》2014,87(2):102-113
In this study, combustion and emissions characteristics of a turbocharged compression ignition engine fueled with dimethyl ether (DME) and biodiesel blends are experimentally investigated. The effects of nozzle parameter on combustion and emissions are evaluated. The result shows that with the increase of DME proportion, ignition delay, the peak in-cylinder pressure, peak heat-release rate, peak in-cylinder temperature decrease, and their phases retard. Compared to the nozzle 6 × 0.40 mm, the peak cylinder pressure and peak heat-release rate are higher with nozzle 6 × 0.35 mm, and their phases are advanced. Increased DME proportion in fuel blends causes greater differences. Compared to biodiesel, NOx emissions of blends significantly decrease; HC emissions and CO emissions increase slightly. DME–biodiesel blends can be used as an alternative in a turbocharged CI engine. To obtain low NOx emissions and a soft engine operation, for high DME proportion blended fuels, nozzle of 6 × 0.40 mm adopted. 相似文献
11.
《International Journal of Hydrogen Energy》2022,47(17):10083-10096
In the current work, Chemkin Pro's HCCI numerical model is used in order to explore the feasibility of using hydrogen in a dual fuel concept where hydrogen peroxide acts as ignition promoter. The analysis focuses on the engine performance characteristics, the combustion phasing and NOx emissions. It is shown that the use of hydrogen/hydrogen peroxide at extremely fuel lean conditions (φeff = 0.1 ? 0.4) results in significantly better performance characteristics (up to 60% increase of IMEP and 80% decrease of NOx) compared to the case of a preheated hydrogen/air mixture that aims to simulate the use of a glow plug. It is also shown that the addition of H2O2 up to 10% (per fuel volume) increases significantly the IMEP, power, torque, thermal efficiency (reaching values more than 60%) while also decreasing remarkably NOx emissions which will not require any exhaust after-treatment, for all engine speeds. The results presented herein are novel and promising, yet further research is required to demonstrate the feasibility of the proposed technology. 相似文献
12.
《International Journal of Hydrogen Energy》2019,44(2):1239-1252
Concerns as to the adverse effects of diesel engine exhaust on urban air quality have resulted in increasingly stringent emissions legislation, with the prospect of many major global cities potentially banning diesel vehicles. Emissions of nitrogen oxides (NOx) and particulate matter (PM) are linked to increases in premature mortality, and the simultaneous control of both pollutants through modified combustion strategies presents a significant challenge. In this work, the effects of displacing diesel fuel with hydrogen on exhaust emissions were investigated in both a single cylinder research engine and in a demonstration vehicle. In the initial stage, tests were undertaken on a supercharged, direct injection, single cylinder diesel research engine at different engine loads, intake air pressures and EGR levels. Hydrogen was aspirated with the intake air, and EGR was simulated by supplying the intake pipe with compressed nitrogen gas. The results showed a reduction in CO2 and particulate emissions with increasing H2 addition, and an increase in NOx emissions at H2 levels greater than 10% of the total input energy to the engine. The next stage involved tests on a chassis dynamometer with a small van equipped with the multi-cylinder version of the single cylinder research engine. The van was fitted with a programmable H2 augmentation system, with H2 addition levels specified by accelerator pedal position. During full drive cycle tests conducted with and without H2 augmentation up to 10%, an average rate of 1 kW of H2 was supplied to the engine. With H2 augmentation, over the total drive-cycle, reductions in CO, NOx and particle number were observed, but a higher total PM mass was recorded. 相似文献
13.
《International Journal of Hydrogen Energy》2023,48(60):23308-23322
In this research work, performance and emission parameters of wheat germ oil (WGO) -hydrogen dual fuel was investigated experimentally and these parameters were predicted using different machine learning algorithms. Initially, hydrogen injection with 5%, 10% and 15% energy share were used as the dual fuel strategy with WGO. For WGO +15% hydrogen energy share the NO emission is 1089 ppm, which is nearly 33% higher than WGO at full load. As hydrogen has higher flame speed and calorific value and wider flammability limit which increases the combustion temperature. Thus, the reaction between nitrogen and oxygen increases thereby forming more NO. Smoke emission for WGO +15% hydrogen energy share is 66%, which is 15% lower compared to WGO, since the heat released in the pre-mixed phase of combustion is increased to a maximum with higher hydrogen energy share compared to WGO. Different applications including internal combustion engines have used machine learning approaches for predictions and classifications. In the second phase various machine learning techniques namely Decision Tree (DT), Random Forest (RF), Multiple Linear Regression (MLR), and Support Vector Machines (SVM)) were used to predict the emission characteristics of the engine operating in dual fuel mode. The machine learning models were trained and tested using the experimental data. The most effective model was identified using performance metrics like R-Squared (R2) value, Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE). The result shows that the prediction by MLR model was closest to the experimental results. 相似文献
14.
An experimental investigation on hydrogen as a dual fuel for diesel engine system with exhaust gas recirculation technique 总被引:1,自引:0,他引:1
With higher rate of depletion of the non-renewable fuels, the quest for an appropriate alternative fuel has gathered great momentum. Though diesel engines are the most trusted power sources in the transportation industry, due to stringent emission norms and rapid depletion of petroleum resources there has been a continuous effort to use alternative fuels. Hydrogen is one of the best alternatives for conventional fuels. Hydrogen has its own benefits and limitations in its use as a conventional fuel in automotive engine system.In the present investigation, hydrogen-enriched air is used as intake charge in a diesel engine adopting exhaust gas recirculation (EGR) technique with hydrogen flow rate at 20 l/min. Experiments are conducted in a single-cylinder, four-stroke, water-cooled, direct-injection diesel engine coupled to an electrical generator. Performance parameters such as specific energy consumption, brake thermal efficiency are determined and emissions such as oxides of nitrogen, hydrocarbon, carbon monoxide, particulate matter, smoke and exhaust gas temperature are measured. Usage of hydrogen in dual fuel mode with EGR technique results in lowered smoke level, particulate and NOx emissions. 相似文献
15.
Presently majority of the world’s energy demand is met by fossil fuels. These fuels are depleting at an alarming rate. Thus in future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Among the various alternative fuels, hydrogen is a long-term renewable and least polluting fuel (produced from renewable energy sources). Its clean burning characteristics help to meet the stringent emission norms. Majority of the work using hydrogen as a fuel is being done in spark ignition engine, however, in this experimental investigation efforts have been made to utilize it in compression ignition engine. 相似文献
16.
Mohanad Aldhaidhawi Radu Chiriac Viorel Bădescu Georges Descombes Pierre Podevin 《International Journal of Hydrogen Energy》2017,42(26):16793-16807
An experimental and numerical study was performed to investigate the impact of Biodiesel B20 (blends 20% Rapeseed methyl ester with 80 % Diesel volumetric fraction) and different energetic fractions of hydrogen content (between 0 and 5%) on the mixture formation, combustion characteristics, engine performance and pollutant emissions formation. Experiments were carried out on a tractor Diesel engine, four-cylinders, four-stroke, 50 kW/2400 rpm, and direct injection. Simulations were conducted using the AVL codes (HYDSIM and BOOST 2013). Simulation results were validated against experimental data, by comparing the inline pressure, needle lift, in-cylinder pressure curves for Biodiesel B20 and pure Diesel fuels at 1400 rpm and 2400 rpm, respectively, under full load operating conditions. Good agreement with a maximum of 2.5% relative deviation on the peak results revealed that overall operation conditions Biodiesel B20 provides lower engine performance, efficiency, and emissions except the NOx which are slightly increased. The Biodiesel B20 has shorter ignition delay. By hydrogen addition to B20 with aspiration of the intake air flow the CO emissions, smoke, and total unburned hydrocarbon emissions THC decreased, while the NOx kept the same increasing trend for 1400 rpm and has not quite apparent trend for 2400 rpm. The enrichment by hydrogen of Diesel and B20 fuels has not a significant effect on ignition delay. 相似文献
17.
Exhaust gas recirculation, EGR, is one of the most effective means of reducing NOx emissions from IC engines and is widely used in order to meet the emission standards. In the present work, experimental investigation has been carried out to study the NOx reduction characteristics by exhaust gas recirculation in a dual fueled engine using hydrogen and diesel. A single cylinder diesel engine was converted to operate on hydrogen-diesel dual fuel mode. Hydrogen was injected in intake port and diesel was injected directly inside the cylinder. The injection timing and injection duration of hydrogen were optimized initially based on the performance and emissions. It was observed that start of injection at 5° before gas exchange top dead center (BGTDC) and injection duration of 30° crank angle gives the best results. The flow rate of hydrogen was optimized as 7.5 lpm for the best start of injection and injection duration of hydrogen. Cold exhaust gas recirculation technique was adopted for the optimized injection parameter of hydrogen and flow rate. Maximum quantity of exhaust gases recycled during the test was 25% beyond this the combustion was not stable resulting in increase in smoke. 相似文献
18.
19.
Alberto Boretti 《International Journal of Hydrogen Energy》2011,36(15):9312-9317
The turbocharged Diesel engine is the most efficient engine now in production for transport applications with full load brake engine thermal efficiencies up to 40-45% and reduced penalties in brake engine thermal efficiencies reducing the load. The secrets of the turbocharged Diesel engine performances are the high compression ratio and the lean bulk combustion mostly diffusion controlled in addition to the better use of the exhaust energy. Despite these advantages and the further complications of hydrogen in terms of abnormal combustion phenomena and displacement effect, the most part of the dual fuel Diesel-hydrogen engines has been developed so far injecting hydrogen in the intake manifold or in the intake port, and then injecting the Diesel fuel in the cylinder to ignite there a homogeneous mixture. This paper shows how a latest production common-rail Diesel engine could be modified replacing the Diesel injector by a double injector as those proposed by Westport since more than two decades for CNG first and then for CNG and hydrogen to provide much better performances. A model is first developed and validated versus extensive high quality dynamometer data for the Diesel engine only covering with almost 200 points the load and speed range. This model replaces the multiple injection strategy with a single equivalent injection for the purposes of the brake efficiency results still providing satisfactory accuracy. The model is then used to simulate the dual fuel operation with a pilot Diesel followed by a main hydrogen injection replacing the Diesel fuel with the hydrogen fuel and using the same parameters for start and duration of the equivalent injection at same percentage load and speed. While the top load air-to-fuel ratio of the Diesel is a lean 1.55, the top air-to-fuel ratio of the hydrogen is assumed to be a stoichiometric 1. Within the validity of these assumptions it is shown that the novel engine has better than Diesel fuel conversion efficiencies and higher than Diesel power outputs. These results clearly indicate the development of the direct injection system as the key factor where to focus research and development for this kind of engines. 相似文献
20.
S. Sathishkumar M. Mohamed Ibrahim 《International Journal of Hydrogen Energy》2021,46(20):11494-11510
In this research work, four different diesel injection schedules have been experimented at a BMEP of 2 bar (Low load) in hydrogen diesel dual fuel (HDDF) mode, which are namely single pulse, double pulse phase-1, double pulse phase-2 and multi-pulse. The maximum possible hydrogen energy shares (HES) for single pulse, double pulse phase-1, double pulse phase-2 and multi-pulse injection schedules were 73.99%, 48.98%, 34.46% and 24.39% respectively. Over the injection schedules, double pulse phase-2 improved the brake thermal efficiency (BTE) from 19.50% (single pulse) to 21.61% with a penalty in NO emission. On the other hand, multi-pulse moderately increased the BTE with significant reduction in NO beside rise in smoke emission. At a BMEP of 5 bar (Medium load) operation, there was a considerable reduction in NO emission at maximum range of HES level with 18.21% of EGR, moreover the engine stability was improved with minor increase in smoke emission. 相似文献