首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sustainable pathways for producing hydrogen as a synthesis intermediate or as a clean energetic vector will be needed in the future. Renewable biomass resources should be taken into account in this new scenario. Processing through a pyrolysis step, optimized to high liquid production (bio-oil), increases the energy bulk density of biomass for transportation. Steam reforming of the aqueous fraction is an alternative process that increases the hydrogen content of the syngas. However, the thermochemical conversion of organic compounds derived from biomass involves drawbacks such as coke formation on the catalysts. This work studies the performance of Ni-Al catalysts modified with Ca or Mg in the steam reforming of the aqueous fraction of pyrolysis liquids and the resulting coke deposits. The catalyst composition influenced the quantity and type of coke deposits. Calcium improved the formation of carbonaceous products leading to lower H2/CO ratios while magnesium improved the WGS (water gas shift) reaction. The strategy of reducing the space velocity resulted in a low coke removal although the addition of small quantities of oxygen decreased the coke content of the catalyst by more than 50% weight. Greater efficiency and further catalyst development are needed to improve the energetic requirements of the process.  相似文献   

2.
Catalyst deactivation caused by coke formation is a bottleneck in steam reforming of bio-oil for hydrogen production. The investigation of carbon deposition behavior can make a contribution to the improvement of catalyst and the knowledge of reaction mechanism. In this paper, m-cresol (C7H8O, one of the organic compounds present in bio-oil) was chosen as model compound. The experiment was carried out on a commercial Ni/MgO catalyst. As a comparative test, m-cresol decomposition showed carbon deposition can be formed more easily under higher temperature. In steam reforming process, for the competition of carbon deposition and carbon elimination, a peak value of coking formation rate was obtained in a broad range of temperature (575–900 °C). The increase of steam to carbon ratio can favor the carbon elimination. Final coking formation rate curve was determined under optimal reaction conditions and the results showed the severity of carbon deposition maintained a very low level during the entire reaction time. Based on the distribution of reforming products, high temperature and sufficient water feeding can favor the carbon conversion from solid and liquid phase to gaseous phase. Unreacted m-cresol is the main organic compound detected in liquid condensate. Some secondary reactions can be deduced through the other compounds detected. The carbon deposition state on catalyst surface can be in the form of nanofiber, but their concrete shapes can be different due to different reaction conditions.  相似文献   

3.
    
  相似文献   

4.
The aim of the present work is to produce hydrogen from biomass through bio-oil. Two possible upgrading routes are compared: catalytic and non-catalytic steam reforming of bio-oils. The main originality of the paper is to cover all the steps involved in both routes: the fast pyrolysis step to produce the bio-oils, the water extraction for obtaining the bio-oil aqueous fractions and the final steam reforming of the liquids. Two reactors were used in the first pyrolysis step to produce bio-oils from the same wood feedstock: a fluidized bed and a spouted bed. The mass balances and the compositions of both batches of bio-oils and aqueous fractions were in good agreement between both processes. Carboxylic acids, alcohols, aldehydes, ketones, furans, sugars and aromatics were the main compounds detected and quantified. In the steam reforming experiments, catalytic and non-catalytic processes were tested and compared to produce a hydrogen-rich gas from the bio-oils and the aqueous fractions. Moreover, two different catalytic reactors were tested in the catalytic process (a fixed and a fluidized bed). Under the experimental conditions tested, the H2 yields were as follows: catalytic steam reforming of the aqueous fractions in fixed bed (0.17 g H2/g organics) > non-catalytic steam reforming of the bio-oils (0.14 g H2/g organics) > non-catalytic steam reforming of the aqueous fractions (0.13 g H2/g organics) > catalytic steam reforming of the aqueous fractions in fluidized bed (0.07 g H2/g organics). These different H2 yields are a consequence of the different temperatures used in the reforming processes (650 °C and 1400 °C for the catalytic and the non-catalytic, respectively) as well as the high spatial velocity employed in the catalytic tests, which was not sufficiently low to reach equilibrium in the fluidized bed reactor.  相似文献   

5.
Hydrogen production was studied in the catalytic steam reforming of a synthetic and a real aqueous fraction of bio-oil. Ni/Al coprecipitated catalysts with varying nickel content (23, 28 and 33 relative atomic %) were prepared by an increasing pH technique and tested during 2 h under different experimental conditions in a small bench scale fixed bed setup. The 28% Ni catalyst yielded a more stable performance over time (steam-to-carbon molar ratio, S/C = 5.58) at 650 °C and a catalyst weight/organic flow rate (W/morg) ratio of 1.7 g catalyst min/g organic. Using the synthetic aqueous fraction as feed, almost complete overall carbon conversion to gas and hydrogen yields close to equilibrium could be obtained with the 28% Ni catalyst throughout. Up to 63% of overall carbon conversion to gas and an overall hydrogen yield of 0.09 g/g organic could be achieved when using the real aqueous fraction of bio-oil, but the catalyst performance showed a decay with time after 20 min of reaction due to severe coke deposition. Increasing the W/morg ratio up to 5 g catalyst min/g organic yielded a more stable catalyst performance throughout, but overall carbon conversion to gas did not surpass 83% and the overall hydrogen yield was only ca. 77% of the thermodynamic equilibrium. Increasing reaction temperatures (600–800 °C) up to 750 °C enhanced the overall carbon conversion to gas and the overall yield to hydrogen. However, at 800 °C the catalyst performance was slightly worse, as a result of an increase in thermal cracking reactions leading to an increased formation of carbon deposits.  相似文献   

6.
Steam reforming of crude bio-oil or some heavy component present in bio-oil is a great challenge for sustainable hydrogen production due to the extensive coke formation and catalyst deactivation. Catalyst regeneration will be an unavoidable operation in this process. In this paper, m-cresol (a model compound derived from bio-oil) was steam reformed on commercial Ni-based catalyst. Two conventional carbon elimination methods for coked catalyst were applied and the results showed that sustainable hydrogen production can be obtained based on carbon deposition/elimination. The carbon deposition can be gasified easily under certain temperature. The activity of regenerated catalyst samples can be nearly recovered as the fresh ones. Under the reaction conditions of 850 °C and steam to carbon ratio 5:1, >66% hydrogen mole fraction, >81% hydrogen yield, and >97% carbon conversion can be achieved based on regenerated catalyst. Catalyst characterization indicated that the loss of active metal can be considered as the main reason for tiny activity drop. Ni redispersion and Fe contamination may be another two factors that influence catalyst activity.  相似文献   

7.
    
A straightforward thermodynamic analysis of bio-oil steam reforming was carried out in the context of hydrogen and syngas production, employing Gibbs energy minimization method to determine equilibrium composition and global reaction heat. The bio-oil model compound was a mixture of acetic acid, phenol, and acetone. The effects of process variables, such as temperature and inlet S/C molar ratio, were investigated over a wide range of conditions. Thermodynamic analysis was performed using the software Aspen Plus v.11. It was identified the best operational conditions that could maximize syngas and further hydrogen production considering energy efficiency. The optimum production of hydrogen is 2.28 mol per carbon mole at S/C = 10 and 850 K, and syngas is 2.37 mol per carbon mole at S/C = 10 and 900 K. It has been demonstrated that the equilibrium calculations can be used to simulate these steam reforming reactions, given the catalyst's behavior.  相似文献   

8.
    
The deactivation mechanism of a commercial Rh/CeO2ZrO2 catalyst in raw bio-oil steam reforming has been studied by relating the evolution with time on stream of the bio-oil conversion and products yields and the physicochemical properties of the deactivated catalyst studied by XRD, TPR, SEM, XPS, TPO and TEM. Moreover, the reversibility of the different deactivation causes has been assessed by comparing the behavior and properties of the catalyst fresh and regenerated (by coke combustion with air). The reactions were carried out in an experimental device with two units in series: a thermal treatment unit (at 500 °C, for separation of pyrolytic lignin) and a fluidized bed reactor (at 700 °C, for the reforming reaction). The results evidence that structural changes (support aging involving partial occlusion of Rh species) are irreversible and occur rapidly, being responsible for a first deactivation period, whereas encapsulating coke deposition (with oxygenates as precursors) is reversible and evolves more slowly, thus being the main cause of the second deactivation period. The deactivation selectively affects the reforming of oxygenates, from least to greatest reactivity. Rh sintering is not a significant deactivation cause at the studied temperature.  相似文献   

9.
Porous silica coated Ni/CeO2ZrO2 catalysts were synthesized for steam reforming of acetic acid. The silica coated Ni/CeO2ZrO2 catalyst showed a significantly enhanced activity (95% acetic acid conversion) than the Ni/CeO2ZrO2 catalysts (62% acetic acid conversion) at a low temperature (550 °C). Interaction between Ni/CeO2ZrO2 and silica layer was proved to be a crucial role on enhancing of catalytic activities. Further characterization (XPS, H2-TPR) indicates this interaction facilitates the steam reforming reaction and raises the selectivity of CO by modifying the surface Ni electronic structure. In addition, the coated catalyst also exhibited a good stability and no obvious deactivation was detected at 550 °C and 600 °C within 30 h.  相似文献   

10.
    
The production of hydrogen via steam reforming (SR) of simulated bio-oil (glycerol, syringol, n-butanol, m-xylene, m-cresol, and furfural) was investigated over Ni/CeO2-Al2O3 and Me-Ni/CeO2-Al2O3 (Me = Rh, Ru) catalysts. Monometallic (Ni) and bimetallic (Rh-Ni and Ru-Ni) catalysts were prepared by the wetness impregnation technique of the CeO2-Al2O3 support previously synthesized by the surfactant-assisted co-precipitation method. The as-prepared powders were systematically characterized by N2-physisorption, XRD, H2-TPR, and TEM measurements to analyze their structure, morphology, and reducibility properties. Experiments were performed in a continuous fixed-bed reactor at atmospheric pressure, temperature of 800 °C, steam to carbon (S/C) ratio of 5, and WHSV of 21.15 h−1. Then, the temperature was decreased to 700 °C and increased afterwards to 800 °C. After the experiments TPO and TEM analysis were performed on the spent catalysts to check any evidence of catalyst deactivation. The results showed that the incorporation of noble metal (Ru or Rh) promoter positively affected the activity of the Ni/CeO2-Al2O3 catalysts by enhancing the reducibility of Ni2+ species. Ni-based catalyst deactivated under the studied conditions, whereas Ru- and mainly Rh-promoted systems showed increased resistance to carbon deposition by favouring the gasification of adsorbed carbon species. Between all tested catalysts, the Rh-Ni/CeO2-Al2O3 provided the highest H2 yield and coking-resistance in SR of simulated bio-oil.  相似文献   

11.
    
Three Ni/CaxFeyO (x/y = 2:1, 1:1, 1:2) catalysts are prepared by impregnation method and applied in steam reforming of acetic acid as the model compound of bio-oil for hydrogen production. The effects of reaction temperature, steam to carbon ratio (S/C), liquid hourly space velocity (LHSV) on gas contents and H2 yield are carefully investigated and optimized. The fresh and used catalysts are characterized by BET, XRD, H2-TPR, CO2-TPD, SEM and TG methods. The experimental and characterization results show that the Ni/CaFe2O4 catalyst displays the best activity and stability among the three catalysts, providing 92.1% of H2 yield under S/C = 5, LHSV = 3.4 h−1 and at 600 °C. The strong interaction between Ni and CaFe2O4 support result in the formation of Ni–Fe alloy and Ca2Fe2O5, which shows the synergistic effects on the resistant to carbon deposition and metal sintering, thereby improving the activity and stability of the Ni/CaFe2O4 catalyst.  相似文献   

12.
Catalysts based on Ni supported on alumina were studied for steam reforming (SR) of a synthetic bio-oil/bio-glycerol mixture and a real bio-oil. Catalyst tests were carried out in a continuous fixed bed reactor at atmospheric pressure and steam to carbon (S/C) ratio of 5.0. In the case of experiments with the bio-oil/bio-glycerol mixture the initial temperature was 1073 K, then it was successively changed to 973 K and 1073 K again to assess catalyst deactivation. Experiments with the bio-oil sample were run at 1073 K. First, the effect of modifications to the alumina support with CeO2 and La2O3 was studied in monometallic catalysts. Ni/CeO2Al2O3 was identified as the catalyst more resistant to deactivation, likely due to its higher oxygen mobility, and selected for further tests. Then, bimetallic catalysts were produced by impregnation of noble metals (Pd, Pt or Rh) on the Ni catalyst supported on CeO2Al2O3. Co-impregnation of Rh and Ni on the CeO2Al2O3 support represented a further improvement in the catalytic activity and stability respect to the monometallic catalyst, leading to stable gas compositions close to thermodynamic equilibrium due to the favourable RhNi interactions. RhNi/CeO2Al2O3 is therefore a promising catalyst to produce a hydrogen-rich gas from bio-oil SR.  相似文献   

13.
The feasibility of the steam reforming of bio-oil aqueous fraction and bio-ethanol mixtures has been studied in a continuous process with two in-line steps: thermal step at 300 °C (for the controlled deposition of pyrolytic lignin during the heating of the bio-oil/bio-ethanol feed) followed by steam reforming in a fluidized bed reactor on a Ni/α-Al2O3 catalyst. The effect of bio-ethanol content in the feed has been analyzed in both the thermal and reforming steps, and the suitable range of operating conditions (temperature and space-time) has been determined for obtaining a high and steady hydrogen yield. Higher ethanol content in the mixture feed improves the reaction indices and reduces coke deposition. Operating conditions of 700 °C and space-times higher than 0.23 gcatalyst h (gbio-oil+EtOH)−1 are suitable for attaining almost fully conversion of oxygenates (bio-oil and ethanol) and hydrogen yields above 93%, with low catalyst deactivation.  相似文献   

14.
This paper reports on the steam reforming, in continuous regime, of the aqueous fraction of bio-oil obtained by flash pyrolysis of lignocellulosic biomass (sawdust). The reaction system is provided with two steps in series: i) thermal step at 200 °C, for the pyrolytic lignin retention, and ii) reforming in-line of the treated bio-oil in a fluidized bed reactor, in the range 600–800 °C, with space-time between 0.10 and 0.45 gcatalyst h (gbio-oil)−1. The benefits of incorporating La2O3 to the Ni/α-Al2O3 catalyst on the kinetic behavior (bio-oil conversion, yield and selectivity of hydrogen) and deactivation were determined. The significant role of temperature in gasifying coke precursors was also analyzed. Complete conversion of bio-oil is achieved with the Ni/La2O3-αAl2O3 catalyst, at 700 °C and space-time of 0.22 gcatalyst h (gbio-oil)−1. The catalyst deactivation is low and the hydrogen yield and selectivity achieved are 96% and 70%, respectively.  相似文献   

15.
Hydrogen production from renewable resources has received extensive attention recently for a sustainable and renewable future. In this study, hydrogen was produced from catalytic steam reforming of the aqueous fraction of crude bio-oil, which was obtained from pyrolysis of biomass. Five Ni–Al catalysts modified with Ca, Ce, Mg, Mn and Zn were investigated using a fixed-bed reactor. Optimized process conditions were obtained with a steam reforming temperature of 800 °C and a steam to carbon ratio of 3.54. The life time of the catalysts in terms of stability of hydrogen production and prohibition of coke formation on the surface of the catalyst were carried out with continuous feeding of raw materials for 4 h. The results showed that the Ni–Mg–Al catalyst exhibited the highest stability of hydrogen production (56.46%) among the studied catalysts. In addition, the life-time test of catalytic experiments showed that all the catalysts suffered deactivation at the beginning of the experiment (reduction of hydrogen production), except for the Ni–Mg–Al catalyst; it is suggested that the observation of abundant amorphous carbon formed on the surface of reacted catalysts (temperature programmed oxidation results) may be responsible for the initial reduction of hydrogen production. In addition, the Ni–Ca–Al catalyst showed the lowest hydrogen production (46.58%) at both the early and stabilized stage of catalytic steam reforming of bio-oil.  相似文献   

16.
    
Zeolite L featuring different size and shape (nanocrystals and discs), with and without alkaline metal exchange (Cs or Na), was used as catalyst support in bio-oil/bio-glycerol mixture Steam Reforming (SR). Zeolites were modified with CeO2 to improve support properties before the impregnation of nickel. Then, prepared catalysts were tested in SR of a multi-component synthetic bio-oil/bio-glycerol mixture at 1073 and 973 K, under atmospheric pressure and using a Steam to Carbon (S/C) ratio of 5.0. Activity tests showed that catalysts deactivated during the experiments at 973 K. In addition, the sodium exchange produced the sintering of the Zeolite L crystals. Thus, Na containing catalysts produced low conversions and hydrogen yields lower than 30%. On the other hand, Cs containing catalysts resulted in slightly lower hydrogen yields than the supports without this metallic cation. Regarding the morphology of the zeolites, the ones with disc shape were the most active for bio-oil SR purposes producing hydrogen yields close to 80% in the first reaction stage at 1073 K and hydrogen yields close to the 50% at the last reaction stage at 1073 K.  相似文献   

17.
Ceria-supported Pt, Ir and Co catalysts are prepared herein by the deposition–precipitation method and investigated for their suitability in the steam reforming of ethanol (SRE) at a temperature range of 250–500 °C. SRE is tested in a fixed-bed reactor under an H2O/EtOH molar ratio of 13 and 20,000 h−1 GHSV. Possible pathways are proposed according to the assigned temperature window to understand the different catalysts attributed to specific reaction pathways. The Pt/CeO2 catalyst shows the best carbon–carbon bond-breaking ability and the lowest complete ethanol conversion temperature of 300 °C. Acetone steam reforming over the Ir/CeO2 catalyst at 400 °C promotes a hydrogen yield of up to 5.3. Lower reaction temperatures for the water–gas shift and acetone steam reforming are in evidence for the Co/CeO2 catalyst, whereas the carbon deposition causes its deactivation at temperature over 500 °C.  相似文献   

18.
    
Thermodynamic analysis of steam reforming of blends of two model oxygenates, acetic acid and acetone, representing carboxylic acids and ketones in bio-oil is performed to investigate the effects of their potential interactions on hydrogen yield, synthesis gas composition and progress of reaction network. The results show that both acetic acid and acetone reach complete conversion at all operating conditions. Higher S/C molar ratio results in higher H2 and CO2 yields for both acetic acid and acetone. With the increase in pressure, H2 and CO yields are diminished whereas CH4 and CO2 yields are enhanced. H2 and CO2 yields increase with the decrease in acetone concentration in the feed blend. CO and CH4 production are affected adversely for acetic acid rich blends. The maximum H2 yield values are 75.54%, 78.34%, 80.09%, 81.78% and 84.17% at 700 °C for acetic acid/acetone blends of 0.0/1.0, 0.3/0.7, 0.5/0.5, 0.7/0.3 and 1.0/0.0, respectively.  相似文献   

19.
    
The Ni catalyst supported on CaO-modified attapulgite (CaO-ATP) were synthesized by wet impregnation method at a constant Ni metal loading (10 wt%). The catalyst was tested by carrying out a glycerin steam reforming reaction under the following conditions: 400–800 °C, W/G is 3, GHSV is 1 h−1. Ni–CaO-ATP exhibited the highest hydrogen yield (85.30%) and glycerol conversion (93.71%) at 600 °C. The catalysts were characterized by N2 adsorption/desorption, BET, XRD, H2-TPR, TG and SEM. The results show that ATP has good resistance to carbon deposition. As an attapulgite modifier of Ni–CaO-ATP, CaO promotes the dispersion of the active component nickel species, which would promote the water gas shift reaction, leading to the improving of hydrogen yield. In addition, the addition of Ca would further enhance the inhibition of carbon deposition and prolong the life of the Ni–CaO-ATP catalyst.  相似文献   

20.
To clarify the understanding of the mechanism of bio-oil catalytic steam reforming, we selected acetic acid as a typical bio-oil model compound to study its detailed behavior in decomposition over an active stepped Ni surface by density functional theory calculations. The adsorption geometries and energies of various intermediates were reported. Linear correlations between the adsorption energy and the number of hydrogen atoms removed for CHxCOOH, CHxCOO, and CHx species (x = 1–3) were found, with increments of ?1.56, ?0.81, and ?1.80 eV, respectively. Thirty-seven possible elementary reactions of acetic acid decomposition were proposed, and their activation energies, reaction energies, rate constants, and equilibrium constants were calculated. Acetic acid dissociation likely started via α-carbon dehydrogenation, OH dehydrogenation, and dehydroxylation. Combined with microkinetic modeling, the most preferable decomposition pathway was suggested as CH3COOH → CH3CO → CO + CH3. The rate-determining step was CH3COOH dehydroxylation to CH3CO with an activation energy of 0.68 eV and a rate constant of 3.82 × 108 s?1. The formation of CH3COO was dominant at high temperatures, whereas its decomposition occurred with difficulty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号