首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study investigates the performance of a multi-generation plant by integrating a parabolic dish solar collector to a steam turbine and absorption chiller producing electricity and process heat and cooling. Thermodynamic modeling of the proposed solar dish integrated multi-generation plant is conducted using engineering equation solver to investigate the effect of certain operating parameters on the performance of the integrated system. The performance of the solar integrated plant is evaluated and compared using three different heat transfer fluids, namely, supercritical carbon dioxide, pressurized water, and Therminol-VPI. The useful heat gain by collector is utilized to drive a Rankine cycle to evaluate the network output, rate of process heat, cooling capacity, overall energetic, and exergetic efficiencies as well as coefficient of performance. The results show that water is an efficient working fluid up to a temperature of 550 K, while Therminol-VPI performs better at elevated temperatures (630 K and above). Higher integrated efficiencies are linked with the lower inlet temperature and higher mass flow rates. The integrated system using pressurized water as a heat transfer fluid is capable of producing 1278 and 832 kW of power output and process heat, respectively, from input source of almost 6121 kW indicating overall energy and exergy efficiencies of 34.5% and 37.10%, respectively. Furthermore, multi-generation plant is evaluated to assess the exergy destruction rate and steam boiler is witnessed to have the major contribution of this loss followed by the turbine. The exergo-environmental analysis is carried out to evaluate the impact of the system on its surroundings. Exergo-environmental impact index, impact factor, impact coefficient, and impact improvement are evaluated against increase in the inlet temperature of the collector. The single-effect absorption cycle is observed to have the energetic and exergetic coefficient of performances of 0.86 and 0.422, for sCO2 operating system, respectively, with a cooling load of 228 kW.  相似文献   

2.
In this paper, a combined power plant based on the dish collector and biomass gasifier has been designed to produce liquefied hydrogen and beneficial outputs. The proposed solar and biomass energy based combined power system consists of seven different subplants, such as solar power process, biomass gasification plant, gas turbine cycle, hydrogen generation and liquefaction system, Kalina cycle, organic Rankine cycle, and single-effect absorption plant with ejector. The main useful outputs from the combined plant include power, liquid hydrogen, heating-cooling, and hot water. To evaluate the efficiency of integrated solar energy plant, energetic and exergetic effectiveness of both the whole plant and the sub-plants are performed. For this solar and biomass gasification based combined plant, the generation rates for useful outputs covering the total electricity, cooling, heating and hydrogen, and hot water are obtained as nearly 3.9 MW, 6584 kW, 4206 kW, and 0.087 kg/s in the base design situations. The energy and exergy performances of the whole system are calculated as 51.93% and 47.14%. Also, the functional exergy of the whole system is calculated as 9.18% for the base working parameters. In addition to calculating thermodynamic efficiencies, a parametric plant is conducted to examine the impacts of reference temperature, solar radiation intensity, gasifier temperature, combustion temperature, compression ratio of Brayton cycle, inlet temperature of separator 2, organic Rankine cycle turbine and pump input temperature, and gas turbine input temperature on the combined plant performance.  相似文献   

3.
In this study, parabolic trough collector with an integrated source of geothermal water is used with regenerative Rankine cycle with an open feedwater heater, an electrolyzer, and an absorption cooling system. The absorption fluids used in the solar collectors were Al2O3‐ and Fe2O3‐based nanofluids. Detailed energetic and exergetic analyses are done for the whole system including all the components. A comparative analysis of both the used working fluids is done and plotted against their different results. The parameters that are varied to change the output of the system are ambient temperature, solar irradiance, the percentage of nanofluids, the mass flow rate of the geothermal well, the temperature gradient of the geothermal well that had an effect on the net power produced, and the outlet temperature of the solar collector overall energetic and exergetic efficiencies. Other useful outputs by this domestic integrated multigeneration system are the heating of domestic water, space heating (maintaining the temperature at 40°C‐50°C), and desalination of seawater (flash distillation). The hydrogen production rate for both the fluids diverges with each other, both producing average from 0.00490 to 0.0567 g/s.  相似文献   

4.
In this study, a new solar power assisted multigeneration system designed and thermodynamically analyzed. In this system, it is designed to perform heating, cooling, drying, hydrogen and power generation with a single energy input. The proposed study consists of seven sub-parts which are namely parabolic dish solar collector, Rankine cycle, organic Rankine cycle, PEM-electrolyzer, double effect absorption cooling, dryer and heat pump. The effects of varying reference temperature, solar irradiation, input and output pressure of high-pressure turbine and pinch point temperature heat recovery steam generator are investigated on the energetic and exergetic performance of integration system. Thermodynamic analysis result outputs show that the energy and exergy performance of overall study are computed as 48.19% and 43.57%, respectively. Moreover, the highest rate of irreversibility has the parabolic dish collector with 24,750 kW, while the lowest rate of irreversibility is calculated as 5745 kW in dryer. In addition, the main contribution of this study is that the solar-assisted multi-generation systems have good potential in terms of energy and exergy efficiency.  相似文献   

5.
In this comparative study, a parabolic trough solar collector and a parabolic dish solar collector integrated separately with a Rankine cycle and an electrolyzer are analyzed for power as well as hydrogen production. The absorption fluids used in the solar collectors are Al2O3 and Fe2O3 based nanofluids and molten salts of LiCl–RbCl and NaNO3–KNO3. The ambient temperature, inlet temperature, solar irradiance and percentage of nanoparticles are varied to investigate their effects on heat rate and net power produced, the outlet temperature of the solar receiver, overall energy and exergy efficiencies and the rate of hydrogen produced. The results obtained show that the net power produced by the parabolic dish assisted thermal power plant is higher (2.48 kW–8.17 kW) in comparison to parabolic trough (1 kW–6.23 kW). It is observed that both aluminum oxide (Al2O3) and ferric oxide (Fe2O3) based nanofluids have better overall performance and generate higher net power as compared to the molten salts. An increase in inlet temperature is observed to decrease the hydrogen production rate. The rate of hydrogen production is found to be higher using nanofluids as solar absorbers. The hydrogen production rate for parabolic dish thermal power plant and parabolic trough thermal power plant varies from 0.0098 g/s to 0.0322 g/s and from 0.00395 g/s to 0.02454 g/s, respectively.  相似文献   

6.
Renewable energy based multi-generation systems can help solving energy-related environmental problems. For this purpose, a novel solar tower-based multi-generation system is proposed for the green hydrogen production as the main product. A solar-driven open Brayton cycle with intercooling, regeneration and reheat is coupled with a regenerative Rankine cycle and a Kalina cycle-11 as a unique series of power cycles. Significant portion of the produced electricity is utilized to produce green hydrogen in an electrolyzer. A thermal energy storage, a single-effect absorption refrigeration cycle and two domestic hot water heaters are also integrated. Energy, exergy and economic analyses are performed to examine the performance of the proposed system, and a detailed parametric analysis is conducted. Multiobjective optimization is carried out to determine the optimum performance. Optimum energy and exergy efficiencies, unit exergy product cost and total cost rate are calculated as 39.81%, 34.44%, 0.0798 $/kWh and 182.16 $/h, respectively. Products are 22.48 kg/h hydrogen, 1478 kW power, 225.5 kW cooling and 7.63 kg/s domestic hot water. Electrolyzer power size is found as one of the most critical decision variables. Solar subsystem has the largest exergy destruction. Regenerative Rankine cycle operates at the highest energy and exergy efficiencies among power cycles.  相似文献   

7.
In the present study, an innovative multigeneration plant for hydrogen and ammonia generation based on solar and biomass power sources is suggested. The proposed integrated system is designed with the integration of different subsystems that enable different useful products such as power and hydrogen to be obtained. Performance evaluation of designed plant is carried out using different techniques. The energetic and exergetic analyses are applied to investigate and model the integrated plant. The plant consists of the parabolic dish collector, biomass gasifier, PEM electrolyzer and hydrogen compressor unit, ammonia reactor and ammonia storage tank unit, Rankine cycle, ORC cycle, ejector cooling unit, dryer unit and hot water production unit. The biomass gasifier unit is operated to convert biomass to synthesis gaseous, and the concentrating solar power plant is utilized to harness the free solar power. In the proposed plant, the electricity is obtained by using the gas, Rankine and ORC turbines. Additionally, the plant generates compressed hydrogen, ammonia, cooling effect and hot water with a PEM electrolyzer and compressed plant, ammonia reactor, ejector process and clean-water heater, respectively. The plant total electrical energy output is calculated as 20,125 kW, while the plant energetic and exergetic effectiveness are 58.76% and 55.64%. Furthermore, the hydrogen and ammonia generation are found to be 0.0855 kg/s and 0.3336 kg/s.  相似文献   

8.
A novel multigeneration plant that's using natural gas for power, hydrogen, ammonia, and hot water generation, is planned and analyzed, in the current paper. The suggested combined plant integrated with four sub-systems, which are the Brayton cycle, reheat Rankine cycle, the high-temperature steam electrolyzer for hydrogen production, and ammonia synthesis processes. Also, thermodynamic analysis and environmental impact assessment are conducted for the designed plant and sub-systems. Moreover, the sustainability index analysis of this proposed study is conducted. The effects of some important indicators on the performance and on the environmental impact of the modeled system and sub-processes are also studied. According to analyses results, it is noted that the energetic and exergetic efficiencies of the suggested system are 51.83% and 70.27%, respectively, and also the total CO2 emission rate is 11.4 kg/kWh for the integrated plant. Furthermore, the total irreversibility rate is computed as 40007.68 kW, and furthermore, the combustion chamber has a maximum irreversibility rate with 20,033 kW, among the proposed plant components.  相似文献   

9.
Solar-assisted multi-generation systems are eco-friendly with exceptional thermal performance. In the present study, a novel solar-assisted multi-generational system is proposed and investigated for multiple outputs. The proposed system consists of solar tower with heliostat, combined cycle (topping is Brayton cycle, while bottoming is Rankine cycle with reheat and regeneration processes), single effect Lithium-Bromide/water absorption chiller, heat pump, water-based thermal energy storage system and an electrolyzer. The system is integrated with high temperature phase change material (PCM) based thermal storage system for the continuous system operation. The salt PCM KF-MgF2 is selected from the literature having melting temperature of 1280 K with high density and latent heat of fusion. The storage system ensures the stable and continuous working of the system during off sun hours. The aim of the present study is to thermodynamically and exergo-environmentally investigate the performance of PCM based solar driven multi-generation system.The results of the study depict that energy efficiency of single and multi-generation system is approximately 20.93% and 51.62%, while exergy efficiency is almost 22.51% and 53.45%, respectively. Hydrogen production rate and exergetic sustainability index of the proposed system is approximately 0.00742 kg/s and 0.078, respectively. Energy efficiency of multigeneration system is approximately 15.9% and 61% higher than tri-generation and co-generation systems at concentration ratio of 1000. Exergo-environmental impact index decreases to almost 5% by increasing direct normal irradiation, while exergetic sustainability index and exergy stability factor are increased to 125% and 54.2%, accordingly. Finally, energy efficiency of the single generation and multi generation systems are optimized at 23.56% and 56.83%, respectively.  相似文献   

10.
The present study has been conducted using nanofluids and molten salts for energy and exergy analyses of two types of solar collectors incorporated with the steam power plant. Parabolic dish (PD) and parabolic trough (PT) solar collectors are used to harness solar energy using four different solar absorption fluids. The absorption fluids used are aluminum oxide (Al2O3) and ferric oxide (Fe2O3)‐based nanofluids and LiCl‐RbCl and NaNO3‐KNO3 molten salts. Parametric study is carried out to observe the effects of solar irradiation and ambient temperature on the parameters such as outlet temperature of the solar collector, heat rate produced, net power produced, energy efficiency, and exergy efficiency of the solar thermal power plant. The results obtained show that the outlet temperature of PD solar collector is higher in comparison to PT solar collector under identical operating conditions. The outlet temperature of PD and PT solar collectors is noticed to increase from 480.9 to 689.7 K and 468.9 to 624.7 K, respectively, with an increase in solar irradiation from\ 400 to 1000 W/m2. The overall exergy efficiency of PD‐driven and PT‐driven solar thermal power plant varies between 20.33 to 23.25% and 19.29 to 23.09%, respectively, with rise in ambient temperature from 275 to 320 K. It is observed that the nanofluids have higher energetic and exergetic efficiencies in comparison to molten salts for the both operating parameters. The overall performance of PD solar collector is observed to be higher upon using nanofluids as the solar absorbers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This paper performs a thermo-economic assessment of a multi-generation system based on solar and wind renewable energy sources. This system works to generate power, freshwater, and hydrogen, which consists of the following parts: the solar collectors, Steam Rankine subsystem, Organic Rankine subsystem, desalination part, and hydrogen production and compression unit. Initially, the effects of variables including reference temperature, solar radiation intensity, wind speed, and solar cycle mass flow rate, which depend on weather conditions and affect the performance of the integrated system, were investigated. The thermodynamic analysis results showed that the overall study's exergy efficiency, the rate of hydrogen and freshwater production, and total cost rate are 33.3%, 7.92 kg/h, 1.6398 kg/s, and 61.28 $/h, respectively. Also, the net power generation rate in the Steam and Organic Rankine subsystems and wind turbines are 315 kW, 326.52 kW, and 226 kW, respectively. The main goal of this study is to minimize the total cost rate of the system and maximize the exergy efficiency and hydrogen and freshwater production rate of the total system. The results of optimization showed that the exergy efficiency value improved by 20.7%, the hydrogen production rate increased by 1%, and the total cost rate value declined by 2%. Moreover, the optimum point is similar to a region in Hormozgan province, Iran. So, this region is proposed for building the power plant.  相似文献   

12.
The exergetic performance of concentrating type solar collector is evaluated and the parametric study is made using hourly solar radiation. The exergy output is optimized with respect to the inlet fluid temperature and the corresponding efficiencies are computed. Although most of the performance parameters, such as, the exergy output, exergetic and thermal efficiencies, stagnations temperature, inlet temperature, ambient temperature etc. increase as the solar intensity increases but the exergy output, exergetic and thermal efficiencies are found to be the increasing function of the mass flow rate for a given value of the solar intensity. The performance parameters, mentioned above, are found to be the increasing functions of the concentration ratio but the optimal inlet temperature and exergetic efficiency at high solar intensity are found to be the decreasing functions of the concentration ration. On the other hand, for low value of the solar intensity, the exergetic efficiency first increases and then decreases as the concentration ratio is increased. This is because of the reason that the radiation losses increase as the collection temperature and hence, the concentration ratio increases. Hence, for lower value of solar intensity, there is an optimal value of concentration ratio for a given mass flow rate at which the exergetic efficiency is optimal. Again it is also observed that the mass flow rate is a critical parameter for a concentrating type solar collector and should be chosen carefully.  相似文献   

13.
This study is focused on proposing the combination of a Dual Loop solar field, with Dowtherm A and the Solar Salt as heat transfer fluids in parabolic or linear Fresnel solar collectors, coupled to supercritical Carbon Dioxide (s-CO2) Brayton power cycle. The Dual-Loop justification relies on gaining the synergies provided by the different heat transfer fluids properties. The oils advantages are related with the operating experience accumulated in numerous solar power plants deployed around the World, assuring the commercial equipment availability. Also the pipes metal corrosion with oil is much lower than with molten salt. The pipes material cost saving is significant with the oil alternative. The thermal oil main constraint is imposed by the maximum operating temperature (around 400 °C) for avoiding chemical decomposition and degradation, stablishing the plant threshold efficiency 37% due to Carnot principle. On the other hand the Solar Salt mixture (60%NaNO340%KNO3) maximum operating temperature goes up to 550 °C, but the freezing point is stablished around 220 °C requiring pipes and equipment electrical heating for avoiding salts solidification at low temperature. Regarding the balance of plant, the s-CO2 power cycle is the most promising alternative to the actual Rankine power cycle for increasing the plant energy efficiency, reducing the solar collector aperture area and minimizing the equipment dimensions and civil work. Three Brayton cycles configurations with reheating were assessed integrated with the line-focusing Dual-Loop solar field: the simple Brayton cycle (SB), the Recompression cycle (RC), the Partial Cooling with Recompression cycle (PCRC), and the Recompression with Main Compression Intercooling (RCMCI). The power cycle operating thermodynamic parameters (split flow, reheating pressure, mass flow and pressure ratio) were optimized with unconstrained multivariable algorithms: SUBPLEX, UOBYQA and NEWUOA. The main conclusion deducted is the significant efficiency improvement when adopting the s-CO2 Brayton cycle in comparison with the Rankine legacy solution. The Dual-Loop solar field integrated with a Rankine cycle provides a gross efficiency around 41.8%, but when coupling to s-CO2 Brayton RC or RCMCI the plant efficiency goes up to ≈50%. It was also demonstrated the beneficial effect of increasing the total heat exchangers (recuperators) conductance (UA) for optimizing the Brayton cycles efficiency and minimizing the solar field aperture area for a fixed power output, only limited by the minimum pinch point temperature in heat exchangers.  相似文献   

14.
The study aims to optimize the geothermal and solar-assisted sustainable energy and hydrogen production system by considering the genetic algorithm. The study will be useful by integrating hydrogen as an energy storage unit to bring sustainability to smart grid systems. Using the Artificial Neural Network (ANN) based Genetic Algorithm (GA) optimization technique in the study will ensure that the system is constantly studied in the most suitable under different climatic and operating conditions, including unit product cost and the plant's power output. The water temperature of the Afyon Geothermal Power Plant varies between 70 and 130 °C, and its mass flow rate varies between 70 and 150 kg/s. In addition, the solar radiation varies between 300 and 1000 W/m2 for different periods. The net power generated from the region's geothermal and solar energy-supported system is calculated as 2900 kW. If all of this produced power is used for hydrogen production in the electrolysis unit, 0.0185 kg/s hydrogen can be produced. The results indicated that the overall energy and exergy efficiencies of the integrated system are 4.97% and 16.0%, respectively. The cost of electricity generated in the combined geothermal and solar power plant is 0.027 $/kWh if the electricity is directly supplied to the grid and used. The optimized cost of hydrogen produced using the electricity produced in geothermal and solar power plants in the electrolysis unit is calculated as 1.576 $/kg H2. The optimized unit cost of electricity produced due to hydrogen in the fuel cell is calculated as 0.091 $/kWh.  相似文献   

15.
This article is a careful examination of an energy poly-generation unit integrated with an evacuated solar thermal tube collector. A proton exchange membrane (PEM) electrolysis unit is used for hydrogen production, an ejector refrigeration system (ERS) is utilized for cooling demand, and a heater unit is used for heating demand. All sub-systems are validated by considering recent articles. Cooling and heating demand, as well as the net output power are calculated. The modeled poly-generation system's exergy and energy efficiency are maximized by considering the inlet temperature of the heat exchanger and primary pressure of the ejector with the parametric evaluation of the system. The proposed poly-generation set-up can produce cooling load, heating load, and hydrogen with amounts of 5.34 kW, 5.152 kW, and 63 kg/year, respectively. Based on these values, the energy ef?ciency, and exergy ef?ciency are computed to be 64.14%, and 49.62%, respectively. Higher energy and exergy ef?ciencies are obtained by reducing high pressure of the refrigeration cycle or decreasing the temperature outlet of an auxiliary heater. The heat exchanger and thermal energy storage unit have the highest cost rate among all system components with 73,463 $ and 46,357, respectively. Parametric study indicates that the main determinative elements in the total cost rate of the system are the heater, and the solar collector.  相似文献   

16.
In the examined paper, a solar and wind energy supported integrated cycle is designed to produce clean power and hydrogen with the basis of a sustainable and environmentally benign. The modeled study mainly comprises of four subsystems; a solar collector cycle which operates with Therminol VP1 working fluid, an organic Rankine cycle which runs with R744 fluid, a wind turbine as well as hydrogen generation and compression unit. The main target of this work is to investigate a thermodynamic evaluation of the integrated system based on the 1st and 2 nd laws of thermodynamics. Energetic and exergetic efficiencies, hydrogen and electricity generation rates, and irreversibility for the planned cycle and subsystems are investigated according to different parameters, for example, solar radiation flux, reference temperature, and wind speed. The obtained results demonstration that the whole energy and exergy performances of the modeled plant are 0.21 and 0.16. Additionally, the hydrogen generation rate is found as 0.001457 kg/s, and the highest irreversibility rate is shown in the heat exchanger subcomponents. Also, the net power production rate found to be 195.9 kW and 326.5 kW, respectively, with organic Rankine cycle and wind turbine. The final consequences obtained from this work show that the examined plant is an environmentally friendly option, which in terms of the system's performance and viable, for electrical power and hydrogen production using renewable energy sources.  相似文献   

17.
In the proposed study, the thermodynamic performance assessment of ocean thermal energy conversion (OTEC) based hydrogen generation and liquefaction system are evaluated. In this context, the energetic and exergetic analyses of integrated system are conducted for multigeneration. This integrated process is consisted of the heat exchangers, turbine, condenser, pumps, solar collector system, hot storage tank, cold storage tank and proton exchange membrane (PEM) electrolyzer. In addition to that, the impacts of different design indicators and reference ambient parameters on the exergetic performance and exergy destruction rate of OTEC based hydrogen production system are analyzed. The energetic and exergetic efficiencies of integrated system are founded as 43.49% and 36.49%, respectively.  相似文献   

18.
The small-scale open and direct solar thermal Brayton cycle with recuperator has several advantages, including low cost, low operation and maintenance costs and it is highly recommended. The main disadvantages of this cycle are the pressure losses in the recuperator and receiver, turbomachine efficiencies and recuperator effectiveness, which limit the net power output of such a system. The irreversibilities of the solar thermal Brayton cycle are mainly due to heat transfer across a finite temperature difference and fluid friction. In this paper, thermodynamic optimisation is applied to concentrate on these disadvantages in order to optimise the receiver and recuperator and to maximise the net power output of the system at various steady-state conditions, limited to various constraints. The effects of wind, receiver inclination, rim angle, atmospheric temperature and pressure, recuperator height, solar irradiance and concentration ratio on the optimum geometries and performance were investigated. The dynamic trajectory optimisation method was applied. Operating points of a standard micro-turbine operating at its highest compressor efficiency and a parabolic dish concentrator diameter of 16 m were considered. The optimum geometries, minimum irreversibility rates and maximum receiver surface temperatures of the optimised systems are shown. For an environment with specific conditions and constraints, there exists an optimum receiver and recuperator geometry so that the system produces maximum net power output.  相似文献   

19.
Nowdays, the topic involvement of green hydrogen in energy transformation is getting attention in the world. The current research examined, thermo-economic and thermo-environmental analyses of the organic Rankine cycle (ORC) system and the hydrogen production system integrated into the solar collector with medium temperature density are investigated. The presented study is a holistic evaluation of experimentally solar-assisted electricity and hydrogen production. The studied model is comprised of an evacuated tube solar collector for thermal energy generation, ORC system for electricity generation and proton exchanger membrane electrolyzer (PEMe) for hydrogen production. According to the results of the thermodynamic analysis, the energy and exergy efficiency of the whole system are calculated as 39.01% and 17.37%, respectively. Also exergoenviroeconomic and exergoenviromental analysis of the whole system is found as 71.48 kgCO2/kWh and 0.139 $/kgCO2, respectively. In addition, the sustainability index of the presented system is obtained as 1.21. In this study, in addition to thermodynamic analysis, parameters such as energy and exergy affecting environmental and economic efficiency, are explained. Ambient temperature plays a prominent role in energy-based environmental analysis. On the contrary, the ambient temperature did not cause a significant change in the exergy-based environmental analysis.  相似文献   

20.
Current research aims to develop, design, and analyze a novel solar-assisted multi-purpose energy generation system for hydrogen production, electricity generation, refrigeration, and hot water preparation. The suggested system comprises a solar dish for supplying the necessary heat demand, a re-compression carbon dioxide-based Brayton cycle, a PEM electrolyzer for hydrogen generation, an ejector refrigeration system working with ammonia, and a hot water preparation system. The first law and exergy analyses are implemented to determine the performance of the multi-generation plant with various outputs. Besides, the exergo-environmental evaluation of the plant is conducted for the environmental impacts of the plant. Furthermore, parametric analyses are executed for investigating the system outputs, exergy destruction rate, and system efficiencies. According to the results, the rate of hydrogen generated by means of the multi-generation power plant is determined to be 0.062 g/s which corresponds to an hourly production of 0.223 kg. Besides, with the utilization of the supercritical closed Brayton cycle, a power generation rate of 74.86 kW is achieved. Furthermore, the irreversibility of the overall plant is estimated as 535.7 kW in which the primary contributor of this amount is the solar system with a destruction rate of 365.5 kW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号