首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bio-waste embeds an extraordinary renewable potential, and it becomes a source of energy savings when transformed into a valuable resource, like biogas. Cogeneration (CHP) from biogas employing high-temperature Solid Oxide Fuel Cells (SOFCs) scores a high sustainability level, thanks to improved environmental and energy performances. The synergy between the niche market of small/micro biogas producers and SOFCs might act as a springboard to open market opportunities for both SOFC commercialization and business upgrade of small farms. However, local regulations, waste management, renewable energy subsidies and, above all, availability of eligible sites, determine real chances for on-the-ground implementation.Through a detailed analysis of the application scenario, this research aims at investigating opportunities for the experimentation of SOFC–CHP in small biogas plants and identifying the possible bottlenecks for future deployment. When it becomes relevant, energy conversion of livestock (especially cattle and swine) and agriculture waste requires SOFC modules from 10 kWe to 35 kWe. This is in line with the current status of SOFC suppliers. Moreover, considering the fuel cell market roll-out, the average levelized cost of electricity is expected to decrease from 0.387 €/kWh to 0.115 €/kWh, when electricity is produced from livestock waste available on-site.  相似文献   

2.
Biogas (60%-CH4, 40%- CO2) is a potential source of renewable energy when used as energy feedstock for solid oxide fuel cells (SOFC), but releases biogenic CO2 emissions. Hybrid SOFC performance can be affected by fuel composition and reformer performance. Biohythane (58%-CH4, 35%-CO2 and 7% H2) can be a better alternative providing balance between energy and biogenic emissions. Biohythane performance is studied for a 120 kW SOFC stack using ASPEN process model and compared with other feed stocks. This work is the first to study and report on the application of biohythane in SOFC systems. Biohythane was found to produce less biogenic CO2 emissions and 6% less CO at the reformer than biogas. Comparisons show that biohythane provides better efficiencies in hybrid SOFC systems. Sensitivity studies recommends operation of stack with biohythane at Steam to Carbon Ratio (STCR) = 2.0, i = 200 mA cm−2 and UF = 0.85 respectively.  相似文献   

3.
In this study, a thermodynamic and economic analysis of a synthetic fuel production facility by utilizing the hydrogenation of CO2 captured from biogas is carried out. It is aimed to produce methanol, a synthetic fuel by hydrogenation of carbon dioxide. A PEM electrolyzer driven by grid-tie solar PV modules is used to supply the hydrogen need of methanol. The CO2 is captured from biogas produced in an actual wastewater treatment plant by a water washing unit which is a method of biogas purification. The required power which is generated by PV panels, in order to produce methanol, is found to be 2923 kW. Herein, the electricity consumption of 2875 kW, which is the main part of the total electricity generation, belongs to the PEM system. As a result of the study, the daily methanol production is found to be as 1674 kg. The electricity, hydrogen and methanol production costs are found to be $ 0.043 kWh?1, $ 3.156 kg?1, and $ 0.693 kg?1, respectively. Solar availability, methanol yield from the reactor, and PEM overpotentials are significant factors effecting the product cost. The results of the study presents feasible methanol production costs with reasonable investment requirements. Moreover, the efficiency of the cogeneration plant could be increased via enriching the biogas while emissions are reduced.  相似文献   

4.
Direct feeding of biogas to SOFC, which is derived from municipal organic wastes, has been investigated as a carbon-neutral renewable energy system. CH4/CO2 ratio in the actual biogas fluctuated between 1.4 and 1.9 indicating biogas composition is strongly affected by the kinds of organic wastes and the operational conditions of methane fermentation. Using anode-supported button cells, stable operation of biogas-fueled SOFC was achieved with the internal reforming mode at 800 °C. Cell voltage above 0.8 V was recorded over 800 h at 200 mA cm−2. It has been revealed that air addition to actual biogas reduced the risk of carbon formation and led to more stable operation without compromising cell voltage due to the lowering of anodic overvoltage.  相似文献   

5.
《Biomass & bioenergy》2006,30(3):273-277
Upflow anaerobic sludge blanket (UASB) reactor was installed to replace the conventional anaerobic lagoon treating bagasse wash wastewater from agro-based pulp and paper mill, to generate bio-energy and to reduce greenhouse gas emissions. The plant was designed to treat 12 ML d−1 of wastewater having two 5 ML capacity reactors, 5.75 kg COD m−3 d−1 organic loading rate and 20 h hydraulic retention time. In the plant 80–85% COD reduction was achieved with biogas production factor of 520 L kg−1 COD reduced. In 11 months 4.4 million m3 of biogas was generated from bagasse wash wastewater utilizing UASB process. Utilization of the biogas in the Lime Kiln saved 2.14 ML of furnace oil in 9 months. Besides significant economic benefits, furnace oil saving reduced 6.4 Gg CO2 emission from fossil fuel and conversion of the anaerobic lagoon into anaerobic reactor reduced 2.1 Gg methane emission which is equal to 43.8 Gg of CO2.  相似文献   

6.
A hybrid plant producing combined heat and power (CHP) from biomass by use of a two-stage gasification concept, solid oxide fuel cells (SOFC) and a micro gas turbine was considered for optimization. The hybrid plant represents a sustainable and efficient alternative to conventional decentralized CHP plants. A clean product gas was produced by the demonstrated two-stage gasifier, thus only simple gas conditioning was necessary prior to the SOFC stack. The plant was investigated by thermodynamic modeling combining zero-dimensional component models into complete system-level models. Energy and exergy analyses were applied. Focus in this optimization study was heat management, and the optimization efforts resulted in a substantial gain of approximately 6% in the electrical efficiency of the plant. The optimized hybrid plant produced approximately 290 kWe at an electrical efficiency of 58.2% based on lower heating value (LHV).  相似文献   

7.
The residential sector accounts for about a third of the total world energy consumption. Energy efficiency, Renewable Energy Sources and Hydrogen can play an important role in reducing the consumptions and the emissions and improving the energy security if integrated (Efficiency, Res, Hydrogen) systems are developed and experimented. The paper analyzes a real residential 100 square meters house, where energy efficiency measures and RES technologies have been applied, sizing a hydrogen system (electrolyzer, metal hydrides and fuel cell) for power backup, taking into consideration its dynamic behavior, experimentally determined. The technologies used are already available in the market and, except hydrogen technologies, sufficiently mature. Through energy efficiency technologies (insulation, absorbers, etc), the maximum electrical and thermal power needed decreases from 4.4 kWe to 1.7 kWe (annual consumption from 5000 kWh to 1200 kWh) and from 5.2 kWt to 1.6 kWt (annual consumption from 14,600 kWh to 4500 kWh) respectively. With these reduced values it has been possible to supply the consumptions entirely by small photovoltaic and solar thermal plants (less than 10 m2 each). The hydrogen backup even if remains the most expensive (versus traditional batteries and gasoline generator), satisfying all the electric needs for one day, increases the security and allows net metering. Moreover the low-pressure hydrogen storage system through metal hydrides guarantees system safety too. Finally the system modularity can also satisfy higher energy production.  相似文献   

8.
This paper deals with the experimental analysis of the performance and degradation issues of a Ni-based anode-supported solid oxide fuel cell fed by a methane-free biogas from dark-anaerobic digestion of wastes by pastry and fruit shops. The biogas is produced by means of an innovative process where the biomass is fermented with a pre-treated bacteria inoculum (Clostridia) able to completely inhibit the methanization step during the fermentation process and to produce a H2/CO2 mixture instead of conventional CH4/CO2 anaerobic digested gas (bio-methane). The proposed biogas production route leads to a biogas composition which avoids the need of introducing a reformer agent into or before the SOFC anode in order to reformate it.In order to analyse the complete behaviour of a SOFC with the bio-hydrogen fuel, an experimental session with several H2/CO2 synthetic mixtures was performed on an anode-supported solid oxide fuel cell with a Ni-based anode. It was found that side reactions occur with such mixtures in the typical thermodynamic conditions of SOFCs (650–800 °C), which have an effect especially at high currents, due to the shift to a mixture consisting of hydrogen, carbon monoxide, carbon dioxide and water. However, cells operated with acceptable performance and carbon deposits (typical of a traditional hydrocarbon-containing biogas) were avoided after 50 h of cell operation even at 650 °C. Experiments were also performed with traditional bio-methane from anaerobic digestion with 60/40 vol% of composition. It was found that the cell performance dropped after few hours of operation due to the formation of carbon deposits.A short-term test with the real as-produced biogas was also successfully performed. The cell showed an acceptable power output (at 800 °C, 0.35 W cm−2 with biogas, versus 0.55 W cm−2 with H2) although a huge quantity of sulphur was present in the feeding fuel (hydrogen sulphide at 103 ppm and mercaptans up to 10 ppm). Therefore, it was demonstrated the interest relying on a sustainable biomass processing which produces a biogas which can be directly fed to SOFC using traditional anode materials and avoiding the reformer component since the methane-free mixture is already safe for carbon deposition.  相似文献   

9.
This paper presents a technical and economic analysis of a solid oxide fuel cell system equipped with a palladium membrane reactor (PMR–SOFC) with the aim of determining the benefits of such an integrated unit over the conventional reformer module (CON-SOFC). The performance of both SOFC systems under the conditions for energetically self-sustaining operation (QNET = 0) was achieved by varying the fuel utilization for each operating voltage. Two types of fuels, i.e., methane and desulphurized biogas, are considered. The simulation results show that the maximum power density of the CON-SOFC fuelled by methane (0.423 W/cm2) is higher than that of the CON-SOFC fuelled by biogas (0.399 W/cm2) due to the presence of CO2 in biogas. For the PMR–SOFC, it is found that the operation at a higher permeation pressure offers higher power density because lower fuel utilization is required when operating the SOFC at the energy self-sustained condition. When the membrane reactor is operated at the permeation pressure of 1 bar, the methane-fuelled and biogas-fuelled PMR–SOFCs can achieve the maximum power density of 0.4398 and 0.4213 W/cm2, respectively. Although the PMR–SOFC can offer higher power density, compared with the CON-SOFC, the capital costs of supporting units, i.e., palladium membrane reactor, high-pressure compressor, and vacuum pump, for PMR–SOFC need to be taken into account. The economic analysis shows that the PMR–SOFC is not a good choice from an economic viewpoint because of the requirement of a large high-pressure compressor for feeding gas to the membrane reactor.  相似文献   

10.
This paper presents an exergetic analysis of a combined heat and power (CHP) system, integrating a near-atmospheric solid oxide fuel cell (SOFC) with an allothermal biomass fluidised bed steam gasification process. The gasification heat requirement is supplied to the fluidised bed from the SOFC stack through high-temperature sodium heat pipes. The CHP system was modelled in AspenPlus™ software including sub-models for the gasification, SOFC, gas cleaning and heat pipes. For an average current density of 3000 A m−2 the proposed system would consume 90 kg h−1 biomass producing 170 kWe net power with a system exergetic efficiency of 36%, out of which 34% are electrical.  相似文献   

11.
In this paper, we evaluate the viability of a 9.5‐kWe wooden pellet‐fueled Stirling engine‐based micro‐cogeneration plant as a substitute for small‐scale district heating. The district heating systems against which the micro‐cogeneration plant is compared are based either on a pellet‐fueled boiler or a ground‐source heat pump. The micro‐cogeneration and district heating plants are compared in terms of primary energy consumption, CO2 emissions, and feasibility of the investment. The comparison also considers an optimally operated individual 0.7‐kWe pellet‐fueled Stirling engine micro‐cogeneration system with exhaust gas heat recovery. The study is conducted in two different climates and contributes to the knowledge base by addressing: (i) hourly changes in the Finnish electricity generation mix; and (ii) uncertainty related to what systems are used as reference and the treatment of displaced grid electricity. Our computational results suggest that when operated at constant power, the 9.5‐kWe Stirling engine plant results in reduced annual primary energy use compared with any of the alternative systems. The results are not sensitive to climate or the energy efficiency or number of buildings. In comparison with the pellet‐fueled district heating plant, the annual use of primary energy and CO2 emissions are reduced by a minimum of 25 and 19%, respectively. Owing to a significant displacement of grid electricity, the system's net primary energy consumption appears negative when the total built area served by the plant is less than 1200 m2. On the economic side, the maximum investment cost threshold of a CHP‐based district heating system serving 10 houses or more can typically be positive when compared with oil and pellet systems, but negative when compared with a corresponding heat pump system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The tubular SOFC generator CHP-100, built by Siemens Power Generation (SPG) Stationary Fuel Cells (SFC), is running at the Gas Turbine Technologies (GTT) in Torino (Italy), in the framework of the EOS Project. The nominal load of the generator ensures a produced electric power of around 105 kWe ac and around 60 kWt of thermal power at 250 °C to be used for the custom tailored HVAC system.  相似文献   

13.
Sanitary landfills have been and continue to be one of the most common ways to dispose of urban waste although such landfills inevitably generate waste management problems. Landfills are an important source of anthropogenic CH4 emissions. In this sense the European Union has passed regulations regarding the effective management of biogas within the framework of an EU policy for renewable energies. The sealed landfill analyzed in this study is an example of energy recovery, but in this case the biogas generated by the landfill is being re-used to produce electrical energy. This article presents the results of the economic viability study, which was carried out previous to the construction of the installation. The results based on the use of empirical and theoretical models show the biogas to have a 45% proportion of methane and an overall flowrate ranging from 250 to 550 N m3/h. It is presently being used to produce electricity amounting to approximately 4,500, 000 kW h/year. The economic viability of the installation was estimated by means of the Internal Recovery Rate (IRR) for an exploitation period of 7 years.  相似文献   

14.
Microchannel reactors appear attractive as integral parts of fuel processors to generate hydrogen (H2) for portable and distributed fuel cell applications. The work described in this paper evaluates, characterizes, and demonstrates miniaturized H2 production in a stand-alone ammonia-fuelled microchannel reformer. The performance of the microchannel reformer is investigated as a function of reaction temperature (450–700 °C) and gas-hourly-space-velocity (6520–32,600 Nml gcat−1 h−1). The reformer operated in a daily start-up and shut-down (DSS)-like mode for a total 750 h comprising of 125 cycles, all to mimic frequent intermittent operation envisaged for fuel cell systems. The reformer exhibited remarkable operation demonstrating 98.7% NH3 conversion at 32,600 Nml gcat−1 h−1 and 700 °C to generate an estimated fuel cell power output of 5.7 We and power density of 16 kWe L−1 (based on effective reactor volume). At the same time, reformer operation yielded low pressure drop (<10 Pa mm−1) for all conditions considered. Overall, the microchannel reformer performed sufficiently exceptional to warrant serious consideration in supplying H2 to fuel cell systems.  相似文献   

15.
Biogas is a renewable biofuel that contains a lot of CH4 and CO2. Biogas can be used to produce heat and electric power while reducing CH4, one of greenhouse gas emissions. As a result, it has been getting increasing academic attention. There are some application ways of biogas; biogas can produce hydrogen to feed a fuel cell by reforming process. Urea is also a hydrogen carrier and could produce hydrogen by steam reforming. This study then employes steam reforming of biogas and compares hydrogen-rich syngas production and carbon dioxide with various methane concentrations using steam and aqueous urea solution (AUS) by Thermodynamic analysis. The results show that the utilization of AUS as a replacement for steam enriches the production of H2 and CO and has a slight CO2 rise compared with pure biogas steam reforming at a temperature higher than 800 °C. However, CO2 formation is less than the initial CO2 in biogas. At the reaction temperature of 700 °C, carbon formation does not occur in the reforming process for steam/biogas ratios higher than 2. These conditions led to the highest H2, CO production, and reforming efficiency (about 125%). The results can be used as operation data for systems that combine biogas reforming and applied to solid oxide fuel cell (SOFC), which usually operates between 700 °C to 900 °C to generate electric power in the future.  相似文献   

16.
Hydrogen production from an ammonia-fuelled microchannel reactor is simulated in a three-dimensional (3D) model implemented via Comsol Multiphysics™. The work described in this paper endeavours to obtain a mathematical framework that provides an understanding of reaction-coupled transport phenomena within the microchannel reactor. The transport processes and reactor performance are elucidated in terms of velocity, temperature, and species concentration distributions, as well as local reaction rate and NH3 conversion profiles. The baseline case is first investigated to comprehend the behaviour of the microchannel reactor, then microstructural design and operating parameters are methodically altered around the baseline conditions to explore the optimum values. The simulation results show that an optimum NH3 space velocity (GHSV) of 65,000 Nml gcat−1 h−1 yields 99.1% NH3 conversion and a power density of 32 kWe L−1 at the highest operating temperature of 973 K. It is also shown that a 40-μm-thick porous washcoat is most desirable at these optimum conditions. Finally, a low channel hydraulic diameter (225 μm) is observed to contribute to high NH3 conversion. Mass transport limitations in the porous-washcoat and gas-phase are negligible as depicted by the Damköhler and Fourier numbers, respectively. The experimental microchannel reactor yields 98.2% NH3 conversion and a power density of 30.8 kWe L−1 when tested at the optimum operating conditions established by the model. Good agreement with experimental data is observed, so the integrated experimental-modelling approach developed in this paper may well provide an incisive step toward the efficient design of ammonia-fuelled microchannel reformers.  相似文献   

17.
《Journal of power sources》2006,158(1):403-416
In the near future, fuel cell-based residential micro-CHP systems will compete with traditional methods of energy supply. A micro-CHP system may be considered viable if its incremental capital cost compared to its competitors equals to cumulated savings during a given period of time. A simplified model is developed in this study to estimate the operation of a residential solid oxide fuel cell (SOFC) system. A comparative assessment of the SOFC system vis-à-vis heating systems based on gas, oil and electricity is conducted using the simplified model for a single-family house located in Ottawa and Vancouver. The energy consumption of the house is estimated using the HOT2000 building simulation program. A financial analysis is carried out to evaluate the sensitivity of the maximum allowable capital cost with respect to system sizing, acceptable payback period, energy price and the electricity buyback strategy of an energy utility. Based on the financial analysis, small (1–2 kWe) SOFC systems seem to be feasible in the considered case. The present study shows also that an SOFC system is especially an alternative to heating systems based on oil and electrical furnaces.  相似文献   

18.
Substrate costs in biogas production can be reduced by up to 30% by adjusting logistic capacity to chopper performance. The aim of this article is to analyze the impacts of biogas plant performance factors on total substrate costs for two common biogas plant sizes in Austria. A nonlinear optimization model is built to analyze the impact of alternative substrates, machinery chains, and field distances on total substrate costs of a 250 kWel and a 500 kWel biogas plant. The model minimizes total substrate costs subject to land which is available in different distant land circles around the plant. It optimizes machinery chains from planting to silo storage and considers nitrogen balances at field scales. Scenarios are constructed to investigate the impact of crop rotational constraints and alternative land availabilities on total substrate costs. Model results indicate that maize silage provides the least substrate costs. However, avoiding monoculture maize cropping can increase these costs by up to 29%. We also show that least biogas productions costs are not covered by current electricity prices in Austria.  相似文献   

19.
This paper summarises the first eight months of monitoring of the PHA BONG photovoltaic generation project, a 500 kWp photovoltaic pilot plant, in Mae Hong Son province, Thailand. The local grid in this remote area in the North West of Thailand is very limited in its capacity and cannot be enlarged. It has been in operation since 20 March 2004 by feeding into 400 VAC, 22 kV medium voltage grid. The system consist of a photovoltaic array 1680 modules (140 strings, 12 modules/string; 300 W/module), power conditioning units and battery converter system. During the first eight months of this system's operation, the PV system generated about 383,274 kWh. The average of generating electricity production per day was 1695.9 kWh. It ranged from 1452.3 to 2042.3 kWh. The efficiency of the PV array system ranged from 9 to 12%. The efficiency of the power conditioning units (PCU) is in the range from 92 to 98%. The final yield (YF) ranged from 2.91 to 3.98 h/d and the performance ratio (PR) range from 0.7 to 0.9.  相似文献   

20.
Dimethyl ether (DME) partial oxidation (PO) was studied over 1 wt% Rh/Ce0.75Zr0.25O2 catalyst at temperatures 300–700 °C, O2:C molar ratio of 0.25 and GHSV 10000 h−1. The catalyst was active and stable under reaction conditions. Complete conversion of DME was reached at 500 °C, but equilibrium product distribution was observed only at T ≥ 650 °C. High concentration of CH4 and low contents of CO and H2 were observed at 500–625 °C 75 cm3 of composite catalyst 0.24 wt% Rh/Ce0.75Zr0.25O2/Al2O3/FeCrAl showed excellent catalytic performance in DME PO at O2:C molar ratio of 0.29 and inlet temperature 840 °C which corresponded to carbon-free region. 100% DME conversion was reached at GHSV of 45,000 h−1. The produced syngas contained (vol. %): 33.4 H2, 34.8 N2, 22.7 CO, 3.6 CO2 and 1.6 CH4. Composite catalyst demonstrated the specific syngas productivity (based on CO and H2) in DME PO of 42.8 m3·Lcat−1·h−1 (STP) and the syngas productivity of more than 3 m3·h−1 (STP) that was sufficient for 3 kWe SOFC feeding. PO of natural gas and liquified petroleum gas can be carried out over the same catalyst with similar productivity, realizing the concept of multifuel hydrogen generation. The syngas composition obtained via DME PO was shown to be sufficient for YSZ-based SOFC feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号